The analysis of antioxidant properties of fermented active vinegar from fruits
DOI:
https://doi.org/10.12775/HERB.2023.008Keywords
fermented vinegar, berry fruits, fruit vinegars, polyphenols, FRAP, antioxidant potential,, DPPHAbstract
The vinegar fermentation is a method of processing plant material that has been known since ancient times. Vinegar is primarily used as a condiment to enhance the flavor of dishes and to preserve food. In recent years, as above, there has been a growing interest in vinegar as a healthy beverage rich in bioactive compounds that provide a range of beneficial properties. The purpose of the present study was to examine 7 fruit vinegars, so-called “live” vinegars, prepared from dark fruits: chokeberry, plum,
raspberry, elderberry, blackberry, cherry and the blue honeysuckle (Lonicera caerulea L. var. kamtschatica). The content of polyphenolic compounds and antioxidant potential were determined as a factor shaping the health-promoting properties of these
vinegars. The tests were performed using spectroscopic methods: the DPPH radical assay, the FRAP assay, and the content of total polyphenolic compounds was determined using the Folin-Ciocalteu method. The total polyphenol content was in the
range of 367,2–1443,6 mg GAE/L. The raspberry vinegar had the lowest polyphenol content, while cherry and elderberry vinegar had the highest. Variation in antioxidant activity was found. The deactivation capacity of the DPPH radical by the tested raw
materials ranged from 21,3–77,5%, while the FRAP test was 1,59–10,19 mM FeSO4/L. The test methods used confirmed the high antioxidant activity of the tested fruit vinegars. A positive correlation was also found between the content of polyphenolic compounds and antioxidant power. It was also noted that the quality of vinegar, and thus its health benefits, is determinate by the raw material used. Thus, due to a number of properties, vinegar can be a highly valued fermented food product.
References
Brückner A., Słownik etymologiczny języka polskiego, Kraków 1927, s. 373.
Antolak H., Kwas octowy składnik żywności funkcjonalnej, Przemysł Spożywczy, 2015, 69(9), s. 41–44.
Budak N.H., Aykin E., Seydim A.C., Greene A.K., Guzel‐Seydim Z.B., Functional properties of vinegar, Journal of Food Science, 2014, 79, s. 757–764.
Johnston C.S., Kim C.M., Buller A.J., Vinegar improves insulin sensitivity to a highcarbohydrate meal in subjects with insulin resistance or type 2 diabetes, Diabetes Care, 2004, 27, s. 281–283.
Solieri L., Giudici P., Vinegars of the world, Springer, Milan 2009, s. 1–16.
Na L., Chu X., Jiang S., Li C., Li G., He Y., Liu Y., Li Y., Sun C.., Vinegar decreases blood pressure by down-regulating AT1R expression via the AMPK/PGC-1α/PPARγ pathway in spontaneously hypertensive rats, European Journal of Nutrition, 2016, 55(3), s. 1245–1253.
Balliett M., Burke J.R., Changes in anthropometric measurements, body composition, blood pressure, lipid profile, and testosterone in patients participating in a low-energy dietary intervention, Journal of Chiropractic Medicine, 2013; 12(1), s. 3–14.
Nassiri-Asl M., Hosseinzadeh H., Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update, Phythotherapy Research, 2016; 30(9), s. 1392–1403.
Antoniewicz J., Janda-Milczarek K., Octy winogronowe – charakterystyka, właściwości oraz bezpieczeństwo stosowania, Medycyna Ogólna i Nauki o Zdrowiu, 2021, 27(4), s. 379–386.
Mazza S., Murooka Y., Vinegar through the age, [w:] Vinegars of the world, L. Solieri, P. Giudici (red.), Springer, Milan 2009, s. 17–39.
Rutala W.A., Barbee S.L., Aguiar N.C., Sobsey M.D., Weber D.J., Antimicrobial activity of home disinfectants and natural products against potential human pathogens, Infection Control & Hospital Epidemiology, 2000, 21(1), s. 33–38.
Östman, E., Granfeldt, Y., Persson, L., Björck, I., Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects, European Journal of Clinical Nutrition, 2005, 59, s. 983–988.
Song N.E., Cho S.H., Baik S.H., Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar, Journal of the Science of Food and Agriculture, 2016, 96(11), s. 3723–3730.
Koyama M., Ogasawara Y., Endou K., Akano H., Nakajima T., Aoyama T., Nakamura K., Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar, International Journal of Food Properties, 2017; 20(4), s. 888–898.
Jasbi P., Baker O., Shi X., Gonzalez L.A., Wang S., Anderson S., Xi B., Gu H., Johnston C.S., Daily red wine vinegar ingestion for eight weeks improves glucose homeostasis and affects the metabolome but does not reduce adiposity in adults, Food & Function, 2019, 10(11), s. 7343–7355.
Luzón-Quintana L.M., Castro R., Durán-Guerrero E., Biotechnological processes in fruit vinegar production, Foods, 2021, 10(5), s. 945.
Zhang X.L., Zheng Y., Xia M.L., Wu Y.N., Liu X.J., Xie S.K., Wu Y.F., Wang M., Knowledge domain and emerging trends in vinegar research: A bibliometric review of the literature from WOSCC, Foods, 2020, 9(2), s. 166.
Cybul M., Nowak R., Przegląd metod stosowanych w analizie właściwości antyoksydacyjnych wyciągów roślinnych, Herba Polonica, 2008, 1, s. 68–78.
Nenadis N., Tsimidou M., Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH) tests, Journal of the American Oil Chemists’ Society, 2002; 79, s. 1191–1195.
Sanchez-Moreno C., Methods used to evaluate the free radical scavenging activity in food and biological systems, Food Science and Technology International, 2002; 8(3), s. 121–137.
Apak R., Özyürek M., Güçlü K., Çapanoğlu E., Antioxidant activity apacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays, Journal of Agricultural and Food Chemistry, 2016, 64(5), s. 997–1027.
Regulska E., Samsonowicz M., Ekstrakty ziołowe w aspekcie zawartości związków polifenolowych i aktywności przeciwutleniającej, [w:] Właściwości produktów i surowców żywnościowych, T. Tarko, A. Duda-Chodak, M.D. Witczak, D. Najgebauer-Lejko (red.), Polskie Towarzystwo Technologów Żywności, 2014, s. 227–237.
Zhang Q., Zhang J., Shen J., Silva A., Dennis D.A., Barrow C.J., A simple 96-well microplate method for estimation of total polyphenol content in seaweeds, Journal of Applied Phycology, 2006, (18), s. 445–450.
Tan Y.S., Baskaran A., Nallathamby N., Influence of customized cooking methods on the phenolic contents and antioxidant activities of selected species of oyster mushrooms (Pleurotus spp.), Journal of Food Science and Technology, 2015, 52(5), s. 3058–3064.
Kusznierewicz B., Bartoszek-Pączkowska A., Wolska L., Namieśnik J., Rozdział 10.2. Metody oznaczania właściwości przeciwutleniających próbek żywności, [w:] Przeciwutleniacze w żywności. Aspekty zdrowotne, technologiczne, molekularne i analityczne, W. Grajek (red.), WNT, Warszawa 2007, s. 532–550.
Santos-Sanchez N., Salas-Coronado R., Villanueva-Canongo C., Hernández-Carlos B., Antioxidant Compounds and Their Antioxidant Mechanism, [w:] E. Shalaby, Antioxidants, IntechOpen, London 2019, s. 23–51.
Matsuda M., Shimomura I., Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer, Obesity Research and Clinical Practice, 2013, 7(5), s. 330–41.
Ichiishi E., Li X.-K., Iorio E.L., Oxidative stress and diseases: clinical trials and approaches, Oxidative Medicine and Cellular Longevity, 2016, s. 1–3.
Sharma N., Free Radicals, Antioxidants and Disease, Biology and Medicine, 2014, 6(3), s. 2–6.
Álvarez R., Araya H., Navarro-Lisboa R., Lopez de Dicastillo C., Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method, Food Technology and Biotechnology, 2016, 54(4), s. 462–467.
Ozturk I., Calıskan O., Tornuk F., Sagdıc O., Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars, Food Science and Technology, 2015, (63), s. 144–151.
Yucel I., Gulden S., Berna K., Ozturk I., Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials, Food Science and Biotechnology, 2020, 29(3), s. 401–408.
Ozen M., Ozdemir N., Filiz B.E., Budak N, Kok-Taş T., Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities, Food Chemistry, 2020, 309, s. 125664.
Bakir S., Toydemir G., Boyacioglu D., Beekwilder J., Capanoglu E., Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility, International Journal of Molecular Sciences, 2016, 17(10), s. 1658.
Budak H.B., Guzel‐Seydim Z.B., Antioxidant activity and phenolic content of wine vinegars produced by two different techniques, Journal of the Science of Food and Agriculture, 2010, 9(12), s. 2021–2026.
Ochwanowska E., Chmielewski J., Laba S. , Zeber-Dzikowska I., Liofilizowane owoce jagodowe – właściwości antyoksydacyjne, Przemysł Spożywczy, 2017, 71(12), s. 23–26.
Gramza-Michałowska A., Sidor A., Czarny bez Sambucus nigra w dietoterapii chorób cywilizacyjnych, Przemysł Spożywczy, 2015, 69(1), s. 38–41.
Gryszczyńska B., Iskra M., Gryszczyńska A., Budzyń M., Aktywność przeciwutleniająca wybranych owoców jagodowych, Postępy Fitoterapii, 2011, 4, s. 265–274.
Downloads
The publisher's shop:
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 634
Number of citations: 0