Beyond False Positives and Negatives. Understanding Type III and IV Errors in Social Research
DOI:
https://doi.org/10.12775/PBE.2025.010Słowa kluczowe
type III error, type IV error, social research methodologyAbstrakt
Research methodologies that correlate acquired measurement data with critical values defining the null hypothesis, despite their widespread application, remain susceptible to various inference inaccuracies. The decision to reject or fail to reject the null hypothesis can result in type I or type II errors, which can undermine the validity of conclusions. A comprehensive understanding of these errors is crucial for ensuring the accuracy of inferences drawn in social research. Proper definition and control of variables are essential in minimizing the risk of incorrect conclusions. Moreover, examining the broader research context, beyond just statistical probabilities, reveals the potential for additional logical errors (Kimball, 1957). These errors, classified as type III and type IV, have been examined in prior research (Scanlon et al., 1977).
This paper seeks to provide an overview of these error types and their definitions. The study identifies several causes of these errors in the conducted analysis, including the selection of statistical methods, the choice of testing area (type III errors), and the neglect of violated assumptions or misinterpretation of interaction effects (type IV errors). The underlying causes of these errors are traced to the research methodology itself, such as improper operationalization, incomplete knowledge of the process under study (type III), and failure to account for study limitations (type IV). In addition, this paper proposes strategies to minimize the occurrence of type III and type IV errors, emphasizing their potential impact and providing recommendations to mitigate these risks.
Bibliografia
Aspers, P., & Corte, U. (2019). What Is Qualitative in Qualitative Research. Qualitative Sociology, 42, 139–160, doi: 10.1007/s11133-019-9413-7.
Bayes, T. (1763). LII. An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFR S. Philosophical Transactions of the Royal Society of London, 53, 370–418, doi: 10.1093/biomet/45.3-4.296.
Brzeziński, J.M. (2021). Testy istotności rożnic i wskaźniki wielkości efektu ES – wybrane zagadnienia [Tests of Significance of Differences and Indicators of ES Effect Size – Selected Issues]. In: J.M. Brzeziński (Ed.), Metodologia badań psychologicznych. Wydanie nowe [Psychological Research Methodology. New Edition] (pp. 205–234). Warszawa: Wydawnictwo Naukowe PWN.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. New York, NY: Psychology Press, doi: 10.4324/9780203771587.
Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics, 5th ed. London: SAGE Publications.
Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinbugh, Scotland: Oliver & Boyd.
Gigerenzer, G. (2004). Mindless Statistics. The Journal of Socio-Economics, 33(5), 587–606, doi: 10.1016/j.socec.2004.09.033.
Habes, M., Ali, S., & Pasha, S.A. (2021). Statistical Package for Social Sciences Acceptance in Quantitative Research: From the Technology Acceptance Model’s Perspective. FWU Journal of Social Sciences, 15(4), 34–46, doi: 10.51709/19951272/Winter-2021.
Henson, K. (2006). Effect-Size Measures and Meta-Analytics Thinking in Counseling Psychology Research. The Counseling Psychology, 34(5), 601–629, doi: 10.1177/00110005283558.
Hubbard, R. (2004). Alphabet Soup. Blurring the Distinctions Between p’s and α’s in Psychological Research. Theory & Psychology, 14(3), 295–327, doi: 10.1177/0959354304043638.
Ioannidis, J.P. (2005). Why Most Published Research Findings Are False. PLoS Medicine, 2(8), e124, doi: 10.1371/journal.pmed.0020124.
Józefacka, N., Kołek, M.F., Arciszewska-Leszczuk, A., & Iwanowski, P. (2023). Metodologia i statystyka: Przewodnik naukowego turysty [Methodology and Statistics: A Scientific Tourist’s Guide]. Warszawa: Wydawnictwo Naukowe PWN.
Kamiński, S. (1962). Systematyzacja typowych błędow logicznych [Systematization of Typical Logic Errors]. Roczniki Filozoficzne/Annales de Philosophie/Annals of Philosophy, 10(1), 5–39.
Kimball, A.W. (1957). Errors of the Third Kind in Statistical Consulting. Journal of the American Statistical Association, 52(278), 133–142, doi: 10.1080/01621459.1957.10501374.
King, B.M., & Minium, E.W. (2020). Statystyka dla psychologow i pedagogow [Statistics for Psychologists and Educators], 4th ed. Warszawa: Wydawnictwo Naukowe PWN.
Kruschke, J. (2014). Doing Bayesian Data Analysis: A Tutorial with R. JAGS, and Stan, 2. Academic Press.
Kruskal, W. (1980). The Significance of Fisher: A Review of R.A. Fisher: The Life of a Scientist. Journal of the American Statistical Association, 75(372), 1019–1030, doi: 10.2307/2287199.
Kublikowski, R. (2011). Czym jest definicja? [What Is the Definition]. In: P. Kawalec, P. Lipiński, & R. Wodzisz (Eds.), Podstawy naukoznawstwa [Basics of Science] (pp. 185–209). Lublin: Wydawnictwo KUL.
Macdonald, R.R. (1997). On Statistical Testing in Psychology. British Journal of Psychology, 88(2), 333–347, doi: 10.1111/j.2044-8295.1997.tb02638.x.
Marascuilo, L.A., & Levin, J.R. (1970). Appropriate Post Hoc Comparisons for Interaction and Nested Hypotheses in Analysis of Variance Designs: The Elimination of Type IV Errors. American Educational Research Journal, 7(3), 397–421.
Marvasti, A.B. (2004). Qualitative Research in Sociology. London: Sage Publications Ltd., doi: 10.4135/9781849209700.
McElreath, R. (2018). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman and Hall/CRC.
Mehrad, A., & Zangeneh, M.H.T. (2019). Comparison Between Qualitative and Quantitative Research Approaches: Social Sciences. International Journal for Research in Educational Studies, Iran, 5(7), 1–7.
Mohajan, H.K. (2017). Two Criteria for Good Measurements in Research: Validity and Reliability. Annals of Spiru Haret University. Economic Series, 17(4), 59–82. doi: 10.26458/1746.
Neyman, J., & Pearson, E.S. (1928a). On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference Part I. Biometrika, 20(1–2), 175–240, doi: 10.2307/2331945.
Neyman, J., & Pearson, E.S. (1928b). On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference: Part II. Biometrika, 20A, 263–294, doi: 10.2307/2332112.
Perezgonzalez, J.D. (2015). Fisher, Neyman-Pearson or NHST? A Tutorial for Teaching Data Testing. Frontiers in Psychology, 6, 223, doi: 10.3389/fpsyg.2015.00223.
Scanlon, J.W., Horst, P., Nay, J.N., Schmidt, R.E., & Waller, J.D. (1977). Evaluability Assessment: Avoiding Type III and IV Errors. In: G.R. Gilbert, & P.J. Conklin (Eds.), Evaluation Management: A Sourcebook of Readings (pp. 264-282). United States Civil Service Commission – Bureau of Training.
Schwartz, S., & Carpenter, K.M. (1999). The Right Answer for the Wrong Question: Consequences of Type III Error for Public Health Research. American Journal of Public Health, 89(8), 1175–1180, doi: 10.2105/AJPH.89.8.1175.
Shaffer, J.P. (2002). Multiplicity, Directional (Type III) Errors, and the Null Hypothesis. Psychological Methods, 7(3), 356, doi: 10.1037/1082-989X.7.3.356.
Suchoń, W. (2005). Prolegomena do retoryki logicznej [Prolegomena to the Rethoric of Logic]. Krakow: Wydawnictwo Uniwersytetu Jagiellońskiego.
Sun, S., Pan, W., & Wang, L.L. (2010). A Comprehensive Review of Effect Size Reporting and Interpreting Practice in Academic Journals in Education and Psychology. Journal of Educational Psychology, 102(4), 989–1004, doi: 10.1037/a0019507.
Tate, C.U. (2022). The Importance of Type III and Type IV Epistemic Errors for Improving Empirical Science. In: L.J. Jussim, J.A. Krosnick, & S.T. Stevens (Eds.), Research Integrity: Best Practices for the Social and Behavioral Sciences (pp. 316–337). Oxford University Press, doi: 10.1093/oso/9780190938550.003.0012.
Umesh, U.N., Peterson, R.A., McCann-Nelson, M., & Vaidyanathan, R. (1996). Type IV Error in Marketing Research: The Investigation of ANOVA Interactions. Journal of the Academy of Marketing Science, 24, 17–26, doi: 10.1007/BF02893934.
Uttley, J. (2019). Power Analysis, Sample Size, and Assessment of Statistical Assumptions – Improving the Evidential Value of Lighting Research. Leukos, 15, 143–162, doi: 10.1080/15502724.2018.1533851
Vacha-Haase, T., & Thompson, B. (2004). How to Estimate and Interpret Various Effect Sizes. Journal of Counseling Psychology, 51(4), 473–481, doi: 10.1037/0022-0167.51.4.473.
Xiong, X. (2022). Critical Review of Quantitative and Qualitative Research. In 2022 3rd International Conference on Mental Health, Education and Human Development (MHEHD 2022) (pp. 956–959). Atlantis Press, doi: 10.2991/assehr.k.220704.172.
Yamatani, H., Mann, A., & Feit, M. (2013). Avoiding Type III, IV, and V Errors Through Collaborative Research. Journal of Evidence-Based Social Work, 10(4), 358–364, doi: 10.1080/15433714.2012.664050.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Arkadiusz Prajzner

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 147
Liczba cytowań: 0