Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Przegląd Badań Edukacyjnych (Educational Studies Review)

Snowball Sampling and Its Non-Trivial Nature
  • Home
  • /
  • Snowball Sampling and Its Non-Trivial Nature
  1. Home /
  2. Archives /
  3. Vol. 2 No. 43 (2023): Educational Studies Review /
  4. Methods of data collection and analysis in educational research

Snowball Sampling and Its Non-Trivial Nature

Authors

  • Sławomir Pasikowski Uniwersytet Łódzki https://orcid.org/0000-0002-0768-1596

DOI:

https://doi.org/10.12775/PBE.2023.030

Abstract

Snowball sampling (SS) is one of the popular methods of sampling in social research. The history of the development and implementation of this sampling model sheds light on the conditions of the evolution of the idea of sampling from hidden or hard-to-reach human populations. The seemingly uncomplicated procedure is the source of the method's popularity but also leads to its caricatured forms. This article presents selected elements of the theoretical basis of snowball sampling in its original version and its role in the development of theory related to sampling hard-to-reach populations based on chains of relationships. Special attention is given to the issue of sample representativeness and the conditions for determining the sample size obtained through snowball sampling. The aim of the presentation is to highlight the rational possibilities that the snowball sampling model offers for observational studies on education.

References

Baltar, F., & Brunet, I. (2012). Social Research 2.0: Virtual Snowball Sampling Method Using Facebook. Internet Research, 22(1), 55–74.

Brewer, K., & Gregoire, T.G. (2009). Introduction to Survey Sampling. In: D. Pfeffermann, & C.R. Rao (Eds.), Sample Surveys: Design, Methods and Applications. Vol. 29A (pp. 9–37). Amsterdam: Elsevier.

Cialdini, R.B. (2009). Influence: Science and Practice. Boston: Allyn & Bacon.

Coleman, J.S. (1958–1959). Relational Analysis: The Study of Social Organizations with Survey Methods. Human Organization, 17(4), 28–36.

Deaux, E., & Callaghan, J.W. (1985). Key Informant Versus Self-Report Estimates of Health Behaviour. Evaluation Review, 9(3), 365–368.

Dorofeev, S., & Grant, P. (2006). Statistics For Real-Life Sample Surveys. Non-Simple-Random Samples and Weighted Data. Cambridge: Cambridge University Press.

Erickson, B.H. (1979). Some Problems of Inference From Chain Data. Sociological Methodology, 10, 276–303, doi: 10.2307/270774.

Flick, U. (2009). An Introduction to Qualitative Research. London: SAGE.

Frank, O., & Snijders, T. (1994). Estimating the Size of Hidden Populations Using Snowball Sampling. Journal of Official Statistics, 10(1), 53–67.

Glaser, B., & Strauss, A. (1999). The Discovery of Grounded Theory: Strategies for Qualitative Research. New York: Routledge.

Goodman, L.A. (1961). Snowball Sampling. The Annals of Mathematical Statistics, 32, 148–170.

Granovetter, M. (1976). Network Sampling: Some First Steps. American Journal of Sociology, 81(6), 1287–1303.

Guba, E.G. (1981). Criteria for Assessing the Trustworthiness of Naturalistic Inquiries. Educational Communication and Technology, 29(2), 75–91.

Handcock, M.S., & Gile, K.J. (2011). Comment: On the Concept of Snowball Sampling. Sociological Methodology, 41(1), 367–371.

Heckathorn, D.D. (1997). Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Social Problems, 44(2), 174–199.

Heckathorn, D.D., & Cameron, C.J. (2017). Network Sampling: From Snowball and Multiplicity To Respondent-Driven Sampling. Annual Review of Sociology, 43, 101–119, doi: 10.1146/annurev-soc-060116-053556.

Klovdahl, A.S. (1977). Social Networks in an Urban Area: First Canberra Study. Australian and New Zealand Journal of Sociology, 13, 169–175.

Lohr, S.L. (2010). Sampling: Design and Analysis. Boston: Brooks/Cole, Cengage Learning.

Morse, J.M., Barrett, M., Mayan, M., Olson, K., & Spiers, J. (2002). Verification Strategies for Establishing Reliability and Validity in Qualitative Research. International Journal of Qualitative Methods, 1(2), 13–22, doi: 10.1177/16094069020010.

Patton, M.Q. (2018). Expert Sampling. In: B.B. Frey (Ed.), The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation (p. 648). Los Angeles: SAGE.

Raymond, H.F., Chen, Y.H., & McFarland, W. (2019). “Starfish Sampling”: A Novel, Hybrid Approach To Recruiting Hidden Populations. Journal of Urban Health, 96, 55–62, doi: 10.1007/s11524-018-0316-9.

Spreen, M. (1992). Rare Populations, Hidden Populations, and Link-Tracing Designs: What and Why? Bulletin of Sociological Methodology, 36, 34–58.

Stueve, A., O’Donnell, L.N., Duran, R., San Doval, A., & Blome, J. (2001). Time-Space Sampling in Minority Communities: Results with Young Latino Men Who Have Sex with Men. American Journal of Public Health, 91(6), 922–926, doi: 10.2105/ajph.91.6.922.

TenHouten, W.D., Stern, J., & TenHouten, D. (1971). Political Leadership in Poor Communities: Applications of Two Sampling Methodologies. Urban Affairs Annual

Review, 5, 215–254.

Watters, J.K., & Biernacki, P. (1989). Targeted Sampling: Options for the Study of

Hidden Populations. Social Problems, 36(4), 416–430.

Przegląd Badań Edukacyjnych (Educational Studies Review)

Downloads

  • pdf

Published

2024-01-30

How to Cite

1.
PASIKOWSKI, Sławomir. Snowball Sampling and Its Non-Trivial Nature. Przegląd Badań Edukacyjnych (Educational Studies Review). Online. 30 January 2024. Vol. 2, no. 43, pp. 105-120. [Accessed 6 July 2025]. DOI 10.12775/PBE.2023.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 2 No. 43 (2023): Educational Studies Review

Section

Methods of data collection and analysis in educational research

License

Copyright (c) 2024 Sławomir Pasikowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1665
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop