Angiogeneza, angiogenina i rany pooperacyjne w neurochirurgii
DOI:
https://doi.org/10.15225/PNN.2024.13.4.6Słowa kluczowe
angiogeneza, angiogenina, neurochirurgia, ranaAbstrakt
Angiogeneza to jeden z procesów prowadzących do powstania nowych naczyń krwionośnych, w którym naczynia krwionośne powstają na bazie już istniejących, poprzez ich rozgałęzianie i wydłużanie. Angiogeneza ma znaczenie dla wielu procesów fizjologicznych jak i patologicznych. Jednym z czynników biorących udział we wczesnym etapie angiogenezy jest angiogenina (ANG). Jej stężenie w tkankach czy krwi zmienia się w fizjologicznych i patologicznych procesach. W pracy przedstawiono zagadnienia związane z procesem gojenia się rany w neurochirurgii z uwzględnieniem angiogenezy oraz angiogeniny. (PNN 2024;13(4):168–172)
Bibliografia
[1] Majewski W. Gojenie się ran. W: Oszkinis G., Gabriel M., Pukacki F., Majewski W. (Red.), Leczenie ran trudno gojących się. Blackhorse, Warszawa 2006;17–29.
[2] Szewczyk M.T., Cwajda J., Brazis P. Proces gojenia ran. W: Jawień A., Szewczyk M.T. (Red.), Owrzodzenia żylne goleni. Twoje Zdrowie, Warszawa 2005;58–68.
[3] Nissen N.N., Polverini P.J., Gamelli R.L., DiPietro L.A. Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds. Surgery. 1996;119(4):457–465.
[4] Servold S.A. Growth factor impact on wound healing. Clin Podiatr Med Surg. 1991;8(4):937–953.
[5] Walner D.L., Heffelfinger S.C., Stern Y., Abrams M.J., Miller M.A., Cotton R.T. Potential role of growth factors and extracellular matrix in wound healing after laryngotracheal reconstruction. Otolaryngol Head Neck Surg. 2000;122(3):363–366.
[6] Nissen N.N., Polverini P.J., Koch A.E., Volin M.V., Gamelli R.L., DiPietro L.A. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445–1452.
[7] Karayiannakis A.J., Zbar A., Polychronidis A., Simopoulos C. Serum and drainage fluid vascular endothelial growth factor levels in early surgical wounds. Eur Surg Res. 2003;35(6):492–496.
[8] Cote D.J., Karhade A.V., Larsen A.M., Burke W.T., Castlen J.P., Smith T.R. United States neurosurgery annual case type and complication trends between 2006 and 2013: An American College of Surgeons National Surgical Quality Improvement Program analysis. J Clin Neurosci. 2016;31:106–111.
[9] Belatti D.A., Phisitkul P. Trends in orthopedics: an analysis of Medicare claims, 2000–2010. Orthopedics. 2013;36(3):e366–372.
[10] Mroz T.E., Lubelski D., Williams S.K. et al. Differences in the surgical treatment of recurrent lumbar disc herniation among spine surgeons in the United States. Spine J. 2014;14(10):2334–2343.
[11] Daniels A.H., Ames C.P., Smith J.S., Hart R.A. Variability in spine surgery procedures performed during orthopaedic and neurological surgery residency training: an analysis of ACGME case log data. J Bone Joint Surg Am. 2014;96(23):e196.
[12] Menger R.P., Wolf M.E., Kukreja S., Sin A., Nanda A. Medicare payment data for spine reimbursement; important but flawed data for evaluating utilization of resources. Surg Neurol Int. 2015;6(Suppl 14):S391–S397.
[13] Krishnan K.G., Müller A., Hong B. et al. Complex wound-healing problems in neurosurgical patients: risk factors, grading and treatment strategy. Acta Neurochir (Wien). 2012;154(3):541–554.
[14] Fang C., Zhu T., Zhang P., Xia L., Sun C. Risk factors of neurosurgical site infection after craniotomy: A systematic review and meta-analysis. Am J Infect Control. 2017;45(11):e123–e134.
[15] Korinek A.M., Golmard J.L., Elcheick A. et al. Risk factors for neurosurgical site infections after craniotomy: a critical reappraisal of antibiotic prophylaxis on 4,578 patients. Br J Neurosurg. 2005;19(2):155–162.
[16] Newman M.I., Hanasono M.M., Disa J.J., Cordeiro P.G., Mehrara B.J. Scalp reconstruction: a 15-year experience. Ann Plast Surg. 2004;52(5):501–506.
[17] Schipmann S., Akalin E., Doods J., Ewelt C., Stummer W., Suero Molina E. When the Infection Hits the Wound: Matched Case-Control Study in a Neurosurgical Patient Collective Including Systematic Literature Review and Risk Factors Analysis. World Neurosurg. 2016;95:178–189.
[18] Bruce J.N., Bruce S.S. Preservation of bone flaps in patients with postcraniotomy infections. J Neurosurg. 2003;98(6):1203–1207.
[19] Cassir N., De La Rosa S., Melot A. et al. Risk factors for surgical site infections after neurosurgery: A focus on the postoperative period. Am J Infect Control. 2015;43(12):1288–1291.
[20] Harrigan M.R. Angiogenic factors in the central nervous system. Neurosurgery. 2003;53(3):639–661.
[21] Koziak K. Angiogeneza terapeutyczna. W: Pasierski T., Gaciong Z., Torbicki A., Szmidt J. (Red.), Angiologia. Wyd. Lekarskie PZWL, Warszawa 2004;183–190.
[22] Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol. 2000;50(1–2):1–15.
[23] Zadeh G., Guha A. Angiogenesis in nervous system disorders. Neurosurgery. 2003;53(6):1362–1376.
[24] Yancopoulos G.D., Davis S., Gale N.W., Rudge J.S., Wiegand S.J., Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–248.
[25] Bates D.O., Harper S.J. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002;39(4–5):225–237.
[26] Fett J.W., Strydom D.J., Lobb R.R. et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985;24(20):5480–5486.
[27] Li S., Hu G.F. Angiogenin-mediated rRNA transcription in cancer and neurodegeneration. Int J Biochem Mol Biol. 2010;1(1):26–35.
[28] Tello-Montoliu A., Patel J.V., Lip G.Y. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost. 2006;4(9):1864–1874.
[29] Shimoyama S., Gansauge F., Gansauge S., Negri G., Oohara T., Beger H.G. Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res. 1996;56(12):2703–2706.
[30] Strydom D.J. The angiogenins. Cell Mol Life Sci. 1998;54(8):811–824.
[31] Burgmann H., Hollenstein U., Maca T. et al. Increased serum laminin and angiogenin concentrations in patients with peripheral arterial occlusive disease. J Clin Pathol. 1996;49(6):508–510.
[32] Alkim C., Alkim H., Koksal A.R., Boga S., Sen I. Angiogenesis in Inflammatory Bowel Disease. Int J Inflam. 2015;2015:970890.
[33] Hosaka S., Shah M.R., Barquin N., Haines G.K., Koch A.E. Expression of basic fibroblast growth factor and angiogenin in arthritis. Pathobiology. 1995;63(5):249–256.
[34] Hwang K.S., Park I.H., Choi H., Lee Seung Hoon, Lee Sang Hag, Lee H.M. Increased expression of angiogenin in nasal polyps. Am J Rhinol Allergy. 2011;25(1):e23–26.
[35] Hu G.F., Riordan J.F. Angiogenin enhances actin acceleration of plasminogen activation. Biochem Biophys Res Commun. 1993;197(2):682–687.
[36] Cucci L.M., Satriano C., Marzo T., La Mendola D. Angiogenin and Copper Crossing in Wound Healing. Int J Mol Sci. 2021;22(19):10704.
[37] Yurina N.V., Ageeva T.A., Goryachkin A.M. et al. Effects of Recombinant Angiogenin on Collagen Fiber Formation and Angiogenesis in the Dermis of Wistar Rats. Clin Cosmet Investig Dermatol. 2021;14:187–196.
[38] Bourne W.M. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–918.
[39] Kim K.W., Park S.H., Lee S.J., Kim J.C. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway. Sci Rep. 2016;6:31162.
[40] Kim K.W., Lee S.J., Park S.H., Kim J.C. Ex Vivo Functionality of 3D Bioprinted Corneal Endothelium Engineered with Ribonuclease 5-Overexpressing Human Corneal Endothelial Cells. Adv Healthc Mater. 2018;7(18):e1800398.
[41] Vinekar A., Nair A.P., Sinha S. et al. Tear Fluid Angiogenic Factors: Potential Noninvasive Biomarkers for Retinopathy of Prematurity Screening in Preterm Infants. Invest Ophthalmol Vis Sci. 2021;62(3):2.
[42] Lee S.H., Kim K.W., Joo K., Kim J.C. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol. 2016;16:57.
[43] Pan S.C., Wu L.W., Chen C.L., Shieh S.J., Chiu H.Y. Angiogenin expression in burn blister fluid: implications for its role in burn wound neovascularization. Wound Repair Regen. 2012;20(5):731–739.
[44] Pan S.C., Tsai Y.H., Chuang C.C., Cheng C.M. Preliminary Assessment of Burn Depth by Paper-Based ELISA for the Detection of Angiogenin in Burn Blister Fluid-A Proof of Concept. Diagnostics (Basel). 2020;10(3):127.
[45] Pan S.C., Lee C.H., Chen C.L., Fang W.Y., Wu L.W. Angiogenin Attenuates Scar Formation in Burn Patients by Reducing Fibroblast Proliferation and Transforming Growth Factor β1 Secretion. Ann Plast Surg. 2018;80(2S Suppl 1):S79–S83.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Robert Ślusarz

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 19
Liczba cytowań: 0