Microelements in Human Fertility: A Comprehensive Literature Review (2015–2025)
DOI:
https://doi.org/10.12775/JEHS.2025.83.60664Keywords
fertility, supplements, microelements, assisted reproductive technologies, iron, magnesium, manganese, zinc, copper, iodine, seleniumAbstract
Introduction and purpose
Microelements are essential nutrients required in small amounts but have profound physiological and biochemical roles in human reproduction. The main purpose of this review is to present the current state of knowledge regarding the effects of zinc, selenium, iodine, copper, iron, manganese, and magnesium on male and female fertility. The analysis highlights how deficiencies, excesses, and synergistic interactions among these elements affect gametogenesis, hormonal balance, oxidative stress, epigenetic modifications, and pregnancy outcomes. Through a synthesis of clinical, biochemical, and epidemiological findings, this paper emphasizes the need for micronutrient optimization as an adjunct strategy in managing infertility.
Material and methods
This review follows a comprehensive narrative synthesis approach to evaluate the role of microelements in human fertility, with a focus on zinc, selenium, iodine, copper, iron, manganese, and magnesium. A review was based on the analysis of 44 peer-reviewed articles, clinical, biochemical, and epidemiological studies published between 2015 and 2025. The primary objective was to critically assess the relationship between micronutrient status and fertility outcomes in both male and female populations. Studies were selected based on predefined eligibility criteria, which included research on micronutrient supplementation or deficiency, reproductive outcomes, and evidence from randomized controlled trials (RCTs), cohort studies, and meta-analyses.
Conclusions
Recent research highlights the synergistic effects of these elements, showing that deficiencies or imbalances can exacerbate fertility issues. Optimizing micronutrient levels is becoming an important strategy in fertility management, with potential benefits for both natural conception and assisted reproductive technologies (ART).
References
1.Elhady MSA, Kandil AH, Albalat WM. Trace Element’s Role in Male Infertility; review article. https://www.ajol.info/index.php/ejhm/article/view/223173 Published 2021.
2.Wróblewski M, Wróblewska W, Sobiesiak M. The role of selected elements in oxidative stress protection: key to healthy fertility and reproduction. International Journal of Molecular Sciences. 2024;25(17):9409. doi:10.3390/ijms25179409
3. Sağlam HS, Altundağ H, Ati̇K YT, Dündar MŞ, Adsan Ö. Trace elements levels in the serum, urine, and semen of patients with infertility. TÜBİTAK Academic Journals. https://journals.tubitak.gov.tr/medical/vol45/iss2/28/.
4.Rahban R, Priskorn L, Senn A, et al. Semen quality of young men in Switzerland: a nationwide cross‐sectional population‐based study. Andrology. 2019;7(6):818-826. doi:10.1111/andr.12645
5.Maywald M, Rink L. Zinc in human health and infectious diseases. Biomolecules. 2022;12(12):1748. doi:10.3390/biom121217487.
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. PubMed. 2023;22:809-827. doi:10.17179/excli2023-6335
6.Allouche-Fitoussi D, Breitbart H. The role of zinc in male fertility. International Journal of Molecular Sciences. 2020;21(20):7796. do7i:10.3390/ijms21207796
7.Zigo M, Kerns K, Sen S, et al. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Communications Biology. 2022;5(1). doi:10.1038/s42003-022-03485-8
8.Grieger JA, Grzeskowiak LE, Wilson RL, et al. Maternal Selenium, Copper and Zinc Concentrations in Early Pregnancy, and the Association with Fertility. Nutrients. 2019;11(7):1609. doi:10.3390/nu11071609
9.Matsubayashi H, Kitaya K, Yamaguchi K, Nishiyama R, Takaya Y, Ishikawa T. Is a high serum copper concentration a risk factor for implantation failure? BMC Research Notes. 2017;10(1). doi:10.1186/s13104-017-2708-4
10.Bai S, Zhang M, Tang S, et al. Effects and Impact of selenium on human health, a review. Molecules. 2024;30(1):50. doi:10.3390/molecules30010050
11.Winther KH, Bonnema SJ, Hegedüs L. Is selenium supplementation in autoimmune thyroid diseases justified? Current Opinion in Endocrinology Diabetes and Obesity. 2017;24(5):348-355. doi:10.1097/med.0000000000000356
12.Mistry HD, Pipkin FB, Redman CWG, Poston L. Selenium in reproductive health. American Journal of Obstetrics and Gynecology. 2011;206(1):21-30. doi:10.1016/j.ajog.2011.07.034
13.Razavi M, Jamilian M, Kashan ZF, et al. Selenium Supplementation and the Effects on Reproductive Outcomes, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome. Hormone and Metabolic Research. 2015;48(03):185-190. doi:10.1055/s-0035-1559604
14.Hatch-McChesney A, Lieberman HR. Iodine and Iodine Deficiency: A Comprehensive Review of a Re-Emerging Issue. Nutrients. 2022;14(17):3474. doi:10.3390/nu14173474
15.Gunnarsdóttir I, Brantsæter AL. Iodine: a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research. 2023;67. doi:10.29219/fnr.v67.10369
16.Mathews DM, Johnson NP, Sim RG, O’Sullivan S, Peart JM, Hofman PL. Iodine and fertility: do we know enough? Human Reproduction. 2020;36(2):265-274. doi:10.1093/humrep/deaa312
17.Kayes L, Mullan KR, Woodside JV. A review of current knowledge about the importance of iodine among women of child-bearing age and healthcare professionals. Journal of Nutritional Science. 2022;11. doi:10.1017/jns.2022.50
18.Biological, behavioural and contextual rationale. https://www.who.int/tools/elena/bbc/iodine-pregnancy.
19.Catapano A, Cimmino F, Petrella L, et al. Iron metabolism and ferroptosis in health and diseases: the crucial role of mitochondria in meta-bolically active tissues. The Journal of Nutritional Biochemistry. March 2025:109888. doi:10.1016/j.jnutbio.2025.109888
20.Roemhild K, Von Maltzahn F, Weiskirchen R, Knüchel R, Von Stillfried S, Lammers T. Iron metabolism: pathophysiology and pharmacology. Trends in Pharmacological Sciences. 2021;42(8):640-656. doi:10.1016/j.tips.2021.05.001
21.Zhang FL, Yuan S, Dong PY, et al. Multi-omics analysis reveals that iron deficiency impairs spermatogenesis by gut-hormone synthesis axis. Ecotoxicology and Environmental Safety. 2022;248:114344. doi:10.1016/j.ecoenv.2022.114344
22.Holzer I, Ott J, Beitl K, et al. Iron status in women with infertility and controls: a case-control study. Frontiers in Endocrinology. 2023;14. doi:10.3389/fendo.2023.1173100
23.Tulenheimo‐Silfvast A, Ruokolainen‐Pursiainen L, Simberg N. Association between iron deficiency and fertility. Acta Obstetricia Et Gynecologica Scandinavica. January 2025. doi:10.1111/aogs.15046
24.Wu Y, Yang R, Lan J, et al. Iron overload modulates follicular microenvironment via ROS/HIF-1α/FSHR signaling. Free Radical Biology and Medicine. 2023;196:37-52. doi:10.1016/j.freeradbiomed.2022.12.105
25.Singer ST, Killilea D, Suh JH, et al. Fertility in transfusion‐dependent thalassemia men: Effects of iron burden on the reproductive axis. 26.American Journal of Hematology. 2015;90(9). doi:10.1002/ajh.24083
27.Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A. Copper-Induced changes in reproductive Functions: in vivo and in vitro effects. Physiological Research. February 2016:11-22. doi:10.33549/physiolres.933063
28.Skalnaya MG, Tinkov AA, Lobanova YN, Chang JS, Skalny AV. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. Journal of Trace Elements in Medicine and Biology. 2019;56:124-130. doi:10.1016/j.jtemb.2019.08.009
29.Ogórek M, Gąsior Ł, Pierzchała O, Daszkiewicz R, Lenartowicz M. Role of copper in the process of spermatogenesis. Postępy Higieny I Medycyny Doświadczalnej. 2017;71(1):0. doi:10.5604/01.3001.0010.3846
30.Tvrda E, Peer R, Sikka SC, Agarwal A. Iron and copper in male reproduction: a double-edged sword. Journal of Assisted Reproduction and Genetics. 2014;32(1):3-16. doi:10.1007/s10815-014-0344-7
31.Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Metal Ions in Life Sciences. January 2013:199-227. doi:10.1007/978-94-007-7500-8_7
32.Studer JM, Schweer WP, Gabler NK, Ross JW. Functions of manganese in reproduction. Animal Reproduction Science. 2022;238:106924. doi:10.1016/j.anireprosci.2022.106924
33.Martin KV, Edmondson D, Cecil KM, et al. Manganese exposure and neurologic outcomes in adult populations. Neurologic Clinics. 2020;38(4):913-936. doi:10.1016/j.ncl.2020.07.008
34.Li Y, Wu J, Zhou W, Gao E. Effects of manganese on routine semen quality parameters: results from a population-based study in China. BMC Public Health. 2012;12(1). doi:10.1186/1471-2458-12-919
35.Alawi AMA, Majoni SW, Falhammar H. Magnesium and Human Health: Perspectives and research Directions. International Journal of Endocrinology. 2018;2018:1-17. doi:10.1155/2018/9041694
36.Wong WY, Flik G, Groenen PMW, et al. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reproductive Toxicology. 2001;15(2):131-136. doi:10.1016/s0890-6238(01)00113-7
37.Li R, Li Z, Huang Y, Hu K, Ma B, Yang Y. The effect of magnesium alone or its combination with other supplements on the markers of inflammation, OS and metabolism in women with polycystic ovarian syndrome (PCOS): A systematic review. Frontiers in Endocrinology. 2022;13. doi:10.3389/fendo.2022.974042
38.Ji X, Ye Y, Wang L, Liu S, Dong X. Association between nutrient intake and female infertility: a study based on NHANES database. Journal of Obstetrics and Gynaecology. 2023;43(2). doi:10.1080/01443615.2023.2285025
39.Kapper C, Oppelt P, Ganhör C, et al. Minerals and the menstrual cycle: Impacts on ovulation and endometrial health. Nutrients. 2024;16(7):1008. doi:10.3390/nu16071008
40.Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. Journal of Trace Elements in Medicine and Biology. 2024;84:127459. doi:10.1016/j.jtemb.2024.127459
41.Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. International Journal of Molecular Sciences. 2017;18(6):1237. doi:10.3390/ijms18061237
42.Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9(8):1028-1046. doi:10.1039/c7mt00079k
43.Yildiz A, Kaya Y, Tanriverdi O. Effect of the interaction between selenium and zinc on DNA repair in association with cancer prevention. Journal of Cancer Prevention. 2019;24(3):146-154. doi:10.15430/jcp.2019.24.3.146
44.Zavros A, Andreou E, Aphamis G, et al. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients. 2023;15(14):3133. doi:10.3390/nu15143133
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joanna Kaźmierczak, Anna Jurczak, Paweł Kiełbasa, Weronika Komala, Cyryl Rabcewicz, Marta Kowalska, Michał Dworak, Kornela Kotucha, Katarzyna Kapłon, Jacek Góra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 60
Number of citations: 0