Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • Čeština
    • Deutsch
    • English
    • Español (España)
    • Français (France)
    • Français (Canada)
    • Hrvatski
    • Italiano
    • Język Polski
    • Srpski
    • Українська
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • Čeština
  • Deutsch
  • English
  • Español (España)
  • Français (France)
  • Français (Canada)
  • Hrvatski
  • Italiano
  • Język Polski
  • Srpski
  • Українська

HERBALISM

The influence of plant preparations on reducing stress in plants
  • Home
  • /
  • The influence of plant preparations on reducing stress in plants
  1. Home /
  2. Archives /
  3. Vol. 11 No. 1 (2025): HERBALISM /
  4. Artykuły

The influence of plant preparations on reducing stress in plants

Authors

  • Anna Sikorska Zakład Rolnictwa, Państwowa Akademia Nauk Stosowanych im. Ignacego Mościckiego w Ciechanowie https://orcid.org/0000-0003-4465-1609
  • Ewelina Pietrzak Zakład Rolnictwa, Państwowa Akademia Nauk Stosowanych im. Ignacego Mościckiego w Ciechanowie
  • Marek Gugała Wydział Nauk Rolniczych, Uniwersytet w Siedlcach https://orcid.org/0000-0001-5048-3432

DOI:

https://doi.org/10.12775/HERB.2025.010

Keywords

biostimulants, biotic stress, abiotic stress

Abstract

In recent years, there has been an increase in the world’s population, which determines a greater demand for food. The United Nations estimates that in 2050 there will be approximately 9.7 billion people on Earth, and in 2080 – 10.4 billion. The main problem in the world is drought, which is the result of climate change. Currently, research is being carried out on the defense mechanisms of plants during the occurrence of a stress factor and their analysis at the morphological, physiological and biochemical level. It is observed that substances of plant origin known as plant growth and development regulators or biostimulants are increasingly
used. Growth regulators used when plants are still healthy, participating in the regulation of life processes at the level of a cell, organ or the entire organism, change their metabolism, which makes them stronger and more resistant to attack by a pathogen or other stress factor, and in unfavorable plant growth and development environmental conditions influence faster and more uniform emergence of plants, stimulation of growth and development, and better wintering. Obtaining high and good quality yields in plant production is primarily the ability to prevent or limit the occurrence of biotic and abiotic stresses and regenerate the damage caused by them. The aim of the article was to review research results on the impact of natural plant preparations on reducing water stress in plants. The article, based on scientic data, characterizes the types of stresses occurring in plants, their reactions to water decit and shows how natural and synthetic plant preparations can reduce the effects of water decit in plants. The results of current scientific research indicate that biostimulants also alleviate the symptoms of stress in horticultural crops. The positive effects of the use
of protein hydrolysates prove that they can be used as agents to protect crop plants against environmental stressors, and this is of great importance in the current global climate change scenario.

References

[1] Searchinger T., Hanson C., Ranganathan J., Lipinski B., Waite R., Winterbottom R., Dinshaw A., Heimlich R., Installment 1 of “Creating a Sustainable Food Future” The Great Balancing Act, World Resources Institute, Washington 2013.

[2] Povero G., Mejia J.F., Di Tommaso D., Piaggesi A., Warrior P.A., Systematic approach to discover and characterize natural plant biostimulants, Frontiers in Plant Science, 2016, 7, s. 435.

[3] Waskiewicz A., Gładysz O., Beszterda M., Goliński P., Water stress and vegetable crops, Water Stress Crop Plants Sustain, Approach, 2016, 2, s. 393–411.

[4] Giordano M., Petropoulos S.A., Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress, Agriculture, 2021, 11, s. 463.

[5] Sierra S., Borges A.A., Herrera A.J., Luis J.C., New Biostimulants Screening Method for Crop Seedlings under Water Deficit Stress, Agronomy 2022, 12, 728. DOI: org/10.3390/agronomy12030728.

[6] Kopcewicz J., Lewak S., Fizjologia roślin, Wydawnictwo Naukowe PWN, Warszawa 2012.

[7] Fizjologia roślin. Od teorii do nauk stosowanych, (red.) M. Kozłowska M., PWRiL, Poznań 2007.

[8] Blum A. Drought Resistance, Water-Use Eficiency, and Yield Potential – Are they Compatible, Dissonant, or Mutually Exclusive? Australian Journal of Agricultural Research, 2005, 56, 1159–1168.

[9] Bray E., Bailey-Serres J., Weretlinyk E., Responses to Abiotic Stresses, [w:] Bio- chemistry and Molecular Biology of Plants, (red.) B. Buchanan, W. Gruissem, R. Jones, American Society of Plant Physiology, 2000, s. 1158–1203.

[10] Karczmarczyk S., Nowak L., Nawadnianie roślin, PWRiL, Poznań 2006.

[11] Eyvaz M., Drought: effects and management, IntechOpen, Londyn 2022.

[12] He Y., Fang J., Xu W., Shi P., Substantial Increase of Compound Droughts and Heatwaves in Wheat Growing Seasons Worldwide, International Journal of Climatology, 2021, 10(42), s. 5038–5054.

[13] Dolan F., Lamontagne J., Link R., Hejazi M., Reed P., Edmonds J., Evaluating the Economic Impact of Water Scarcity in a Changing World, Nature Communications, 2021, 12, s. 1915.

[14] Lopez-Nicolas A., Pulido-Velazquez M., Macian-Sorribes H., Economic Risk Assessment of Drought Impacts on Irrigated Agriculture, Journal of Hydrology, 2017, 550, s. 580–589.

[15] Barnabas B., Jager K., Feher A., The effect of drought and heat stress on reproductive processes in cereals, Plant, Cell & Environment, 2008, 31, s. 11–38.

[16] Costa J.M., Ortuño M.F., Chaves M.M., Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture, Journal of Integrative Plant Biology, 2007, 49, s. 1421–1434.

[17] Wilkinson S., Davies W.J., Drought, ozone, ABA and ethylene: new insights from cell to plant to community, Plant, Cell & Environment, 2010, 33(4), s. 510–525. doi.org/10.1111/j.1365-3040.2009.02052.x.

[18] Fang Y., Xiong L., General mechanisms of drought response and their application in drought resistance improvement in plants, Cellular and Molecular Life Sciences, 2015, 72, s. 673–689. doi.org/10.1007/s00018-014-1767-0.

[19] Roohi E., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M., Siosemardeh A., Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley, Journal of Agricultural Science and Technology, 2013, 15, s. 215–228.

[20] Galon L., Concenço G., Ferreira E.A., Aspiazú I., da Silva A.F., Giacobbo C.L., Andres A., Influence of biotic and abiotic stress factors on physiological traits of sugarcane varieties, [w:] Photosynthesis, (red.) Z. Dubinsky, InTech, Rijeka, Croatia 2013.

[21] Jastrzębska M., Kostrzewska M.K., Wanic M., Wpływ deficytu wody i interakcji międzygatunkowych na wybrane parametry fizjologiczne roślin jęczmienia jarego i koniczyny czerwonej, Fragmenta Agronomica, 2016, 33(4), s. 44–59.

[22] Akıncı Ş., Lösel D.M., Plant water-stress response mechanisms, [w:] Water Stress, (red.) I.Md.M. Rahman, InTech, Rijeka, Croatia, 2012.

[23] Bertamini M., Zulini L., Muthuchelian K., Nedunchezhian N., Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants, Photosynthetica, 2006, 44, s. 151–154.

[24] Lawlor D.W., Tezara W., Causes of decreased photosynthetic rate and metabolic capacity in waterdeficient leaf cells: a critical evaluation of mechanisms and integration of processes, Annals of Botany, 2009, 103, s. 561–579.

[25] Carrão H., Naumann G., Barbosa P., Mapping global patterns of drought risk: An empirical framework based on sub-nationalestimates of hazard, exposure, and vulnerability, Global Environmental Change, 2016, 39, s. 108–124.

[26] Wilhite D.A., Quantification of agricultural drought for effective drought mitigation and preparedness, Key issues and challenges, [w:] (red.) M.V.K. Sivakumar, R.P. Motha, D.A. Wilhite, D.A. Wood, Agricultural Drought Indices: Proceedings of an Expert Meeting, June 2–4, 2010, Murcia, Spain, World Meteorological Organization, Geneva 2011, s. 13–21.

[27] Monneveux P., Okono A., Ribaut J.M., Facing the challenges of global agriculture today: what can we do about drought?, Frontiers Physiology, 2013, 4, s. 289. doi.org/10.3389/fphys.2013.00289.

[28] Reguera M., Peleg Z., Blumwald E., Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops, Biochimica Biophysica Acta-Gene Regulatory Mechanism, 2012, 1819(2), s. 186–194. doi.org/10.1016/j.bbagrm.2011.08.005.

[29] James C., 20th Anniversary (1996 to 2015) of the Global Commercialization of BiotechCrops and Biotech Crop Highlights in 2015, ISAAA Brief nr 51, ISAAA, Ithaca, NY, 2015.

[30] Szmidt-Jaworska A, Kopcewicz J., Fizjologia roślin, Wydawnictwo Naukowe PWN, Warszawa 2021, s. 191–194.

[31] Hinsinger P., Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: a review, Plant and Soil, 2001, 237(2), s. 173–195.

[32] Epstein E., Bloom A.J., Mineral Nutrition of Plants: Principles and Perspectives, Sinauer Associates Inc. Sunderland, 2005.

[33] Gupta N., Gaurav S.S., Kumar A., Molecular Basis of Aluminium Toxicity in Plants A Review, American Journal of Plant Sciences, 2013, 4, s. 21–37.

[34] Taiz L., Zeiger E., Plant Physiology, Sinauer Associates Inc., Sunderland 2010.

[35] Marschner H., Mineral Nutrition of Higher Plants, Academic Press, Australia, 2012.

[36] Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A., The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants, Chemical Biological Technologies Agriculture, 2017, 4, s. 5.

[37] Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019.

[38] Du Jardin P., Plant biostimulants: Definition, concept, main categories and regulation, Scienta Horticulturae, 2015, 16, s. 3–14.

[39] Mackiewicz-Walec E., Olszewska M., Biostimulants in the Production of Forage Grasses and Turfgrasses, Agriculture, 2023, 13, s. 1796. doi.org/10.3390/agriculture13091796.

[40] Kulkarni M., Nikam T., Biostimulants: Definition, classification and role in horticulture, Journal of Pharmacognosy and Phytochemistry, 2019, 8(2), s. 245–252.

[41] Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M., Bonini P., Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis, Frontiers in Plant Science, 2014, 5, s. 448.

[42] Stirk W.A., Tarkowská D., Turečová V., Strnad M., Van Staden J., Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima, Journal of Applied Phycology, 2014, 26(1), s. 561–567.

[43] Bulgari R., Franzoni G., Ferrante A., Biostimulants and crop responses: a review, Biological Agriculture & Horticulture, 2015, 31(1), s. 1–17.

[44] Sharma H.S.S., Fleming C., Selby C., Suppression of water stress-induced abscisic acid accumulation by exopolysaccharides from Piriformospora indica is dependent on pattern recognition receptors and mitogen-activated protein kinases, Plant Physiology,

2014, 164(4), s. 1686–1698.

[45] Calvo P., Nelson L., Kloepper J.W., Agricultural uses of plant biostimulants, Plant and Soil, 2014, 383(1–2), s. 3–41.

[46] Fernandes Â., Chaski C., Pereira C., Kostić M., Rouphael Y., Soković M., Barros L., Petropoulos S.A., Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit, Horticulturae, 2022, 8, s. 645. doi.org/10.3390/horticulturae8070645.

[47] Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A., Craigie J., Norrie J., Prithiviraj B., Seaweed extracts as biostimulants of plant growth and development, Journal Plant Growth Regulation, 2009, 28, s. 386–399. doi.

org/10.1007/s00344-009-9103-x.

[48] Craigie J., Seaweed extract stimuli in plant science and agriculture, Journal Applied Phycology, 2011, 23, s. 371–393. doi.org/10.1007/s10811-010-9560-4.

[49] Spann T.M., Little H.A., Applications of a commercial extract of the brown sea-weed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees, Hortscience, 2011, 46(4), s. 577–582.

[50] Elansary H.O., Skalicka-Woźniak K., King I.W., Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments, Plant Physiology Biochemistry, 2016, 105, s. 310–320. doi.org/10.1016/j.plaphy.2016.05.024.

[51] García-García A.L., García-Machado F.J., Borges A.A., Morales-Sierra S., Boto A., Jiménez-Arias D., Pure Organic Active Compounds Against Abiotic Stress: A Biostimulant Overview, Frontiers Plant Service 2020, 11, s. 1839.

[52] Rai N., Rai S.P., Sarma B.K., Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto- and Bio-Stimulants, Frontiers Sustainable Food Systems, 2021, 5, s. 754–853. doi: 10.3389/fsufs.2021.754853.

[53] Sible C.N., Seebauer J.R., Below F.E., Plant Biostimulants: A Categorical Review, Their Implications for Row Crop Production, and Relation to Soil Health Indicators, Agronomy, 2021, 11, s. 1297.

[54] Sikorska A., Gugała M., Biostymulatory – moda czy potrzeba?, Mazowiecki Ośrodek Doradztwa Rolniczego, Siedlce, 2017.

[55] Hernandiz A.E., Jiménez-Arias D., Morales-Sierra S., Borges A.A., De Diego N., Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario, Frontiers in Plant Science, 13, 944066, 2022.

[56] Jiménez-Arias D., García-Machado F.J., Morales-Sierra S., Luis J.C., Suarez E., Hernández M., Valdés F., Borges A.A., Lettuce Plants Treated with L-Pyroglutamic Acid Increase Yield under Water Deficit Stress, Environmental Experimental Botany, 2019, 158, s. 215–222.

[57] Jiménez-Arias D., García-Machado F.J., Morales-Sierra S., Suárez E., Pérez J.A., Luis J.C., Garrido-Orduña C., Herrera A.J., Valdés F., Sandalio L.M., Borges A.A., Menadione sodium bisulphite (MSB): Beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants, Environmental and Experimental Botany, 2019, 157, s. 161–170. doi.org/10.1016/j.envexpbot.2018.10.009.

[58] Jiménez-Arias D., Morales-Sierra S., Borges A.A., Díaz D.D., Biostimulant Nanoencapsulation: The New Keystone to Fight Hunger, Journal Agricultural Food Chemistry, 2020, 68, s. 7083–7085.

[59] Rabêlo V.M., Magalhães P.C., Bressanin L.A., Carvalho D.T., dos Reis C.O., Karam D., Doriguetto A.C., dos Santos M.H., Santos Filho P.R.d.S., de Souza T.C., The Foliar Application of a Mixture of Semisynthetic Chitosan Derivatives Induces Tolerance to Water Deficit in Maize, Improving the Antioxidant System and Increasing Photosynthesis and Grain Yield, Scientific Reports, 2019, 9, s. 8164.

[60] Shemi R., Wang R., Gheith E.S.M.S., Hussain H.A., Hussain S., Irfan M., Cholidah L., Zhang K., Zhang S., Wang L., Effects of Salicylic Acid, Zinc and Glycine Betaine on Morpho-Physiological Growth and Yield of Maize under Drought Stress, Scientific

Reports, 2021, 11, s. 3195.

[61] Peripolli M., Dornelles S.H.B., Lopes S.J., Tabaldi L.A., Trivisiol V.S., Rubert J., Application of biostimulants in tomato subjected to water deficit: Physiological, enzymatic and production responses, Revista Brasileira de Engenharia Agrícola e Ambiental, 25 (2), 2021.

[62] Colla G., Rouphael Y., Biostimulants in horticulture, Scienta Horticulturae, 2015, 196, s. 1–134.

[63] Fernandes Â., Figueiredo S., Finimundy T.C., Pinela J., Tzortzakis N., Ivanov M., Sokovi M., Ferreira I.C.F.R., Petropoulos S.A., Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application, Sustainability, 2021, 13, s. 68–69.

[64] Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B., Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress, Molecules, 2019, 24, s. 2452.

[65] Rigano M.M., Lionetti V., Raiola A., Bellincampi D., Barone A., Pectic enzymes as potential enhancers of ascorbic acid production through the d-galacturonate pathway in Solanaceae, Plant Science, 2018, 266, s. 55–63.

[66] Guo Y.Y., Yu H.Y., Kong D.S., Yan F., Zhang Y.J., Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedling, Photosynthetica, 2016, 54, s. 1–7.

[67] Sato S., Kamiyama M., Iwara T., Makita N., Furukawa H., Ikeda H., Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicum esculentum by distrupting specific physiological processes in male reproductive development, Annalas Botany, 2006, 97, s. 731–738.

[68] Ertani A., Pizzeghello D., Francioso O., Sambo P., Sanchez-Cortes S., Nardi S., Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches, Frontiers Plant Science, 2014, 5, s. 375.

[69] Erba D., Casiraghi M.C., Ribas-Agustí A., Cáceres R., Marfà O., Castellari M., Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by difeeren agronomic techniques, Journal Food Composition Analysis, 2013, 31, s. 245–251.

[70] Goñi O., Quille P., O’Connell S., Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants, Plant Physiology and Biochemistry, 2018, 126, s. 63–73.

[71] Rezaei-Chiyaneh E., Mahdavikia H., Alipour H., Dolatabadian A., Battaglia M.L., Harrison M.T., Biostimulants alleviate water deficit stress and enhance essential oil productivity: a case study with savory, Scientific Reports, 2023, 13, s. 720.

HERBALISM

Downloads

  • pdf (Język Polski)

Published

2026-02-17

How to Cite

1.
SIKORSKA, Anna, PIETRZAK, Ewelina and GUGAŁA, Marek. The influence of plant preparations on reducing stress in plants. HERBALISM. Online. 17 February 2026. Vol. 11, no. 1, pp. 129-152. [Accessed 18 February 2026]. DOI 10.12775/HERB.2025.010.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 11 No. 1 (2025): HERBALISM

Section

Artykuły

License

Copyright (c) 2025 Anna Sikorska, Ewelina Pietrzak, Marek Gugała

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 3
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • Čeština
  • Deutsch
  • English
  • Español (España)
  • Français (France)
  • Français (Canada)
  • Hrvatski
  • Italiano
  • Język Polski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

biostimulants, biotic stress, abiotic stress
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop