Wpływ preparatów roślinnych na ograniczenie stresu u roślin
DOI:
https://doi.org/10.12775/HERB.2025.010Ключові слова
biostymulatory, stres biotyczny, stres abiotycznyАнотація
W ostatnich latach obserwuje się wzrost światowej populacji, co determinuje większe zapotrzebowanie na żywność. Organizacja Narodów Zjednoczonych szacuje, że w 2050 r. będzie około 9,7 mld ludzi, zaś w 2080 r. – 10,4 mld. Głównym problemem na świecie jest susza, będąca skutkiem zmian klimatu. Obecnie prowadzone są badania nad mechanizmami obronnymi u roślin podczas wystąpienia czynnika stresowego oraz ich analiza na poziomie morfologicznym, fizjologicznym i biochemicznym. Obserwuje się, że coraz powszechniej stosowane są środki pochodzenia roślinnego określane jako regulatory wzrostu i rozwoju roślin lub biostymulatory. Regulatory wzrostu zastosowane w niekorzystnych dla wzrostu i rozwoju roślin warunkach środowiska wpływają na uzyskanie szybszych i równomiernych wschodów roślin, stymulację wzrostu i rozwoju, lepsze ich przezimowanie. Celem artykułu był przegląd wyników badań dotyczących wpływu naturalnych preparatów roślinnych na ograniczenie stresu wodnego u roślin. W artykule, opierając się na danych naukowych, scharakteryzowano rodzaje stresów występujących u roślin i ich reakcje na decyt wody
oraz wykazano, w jaki sposób naturalne i syntetyczne preparaty roślinne mogą redukować skutki deficytu wodnego. Wyniki dotychczasowych badań wskazują, że biostymulatory łagodzą objawy stresu również w uprawach ogrodniczych. Pozytywne skutki zastosowania hydrolizatów białkowych dowodzą, że mogą być one zastosowane jako środki chroniące rośliny uprawne przed stresorami środowiskowymi, a to ma ogromne znaczenie w obecnym globalnym scenariuszu zmian klimatycznych.
Посилання
[1] Searchinger T., Hanson C., Ranganathan J., Lipinski B., Waite R., Winterbottom R., Dinshaw A., Heimlich R., Installment 1 of “Creating a Sustainable Food Future” The Great Balancing Act, World Resources Institute, Washington 2013.
[2] Povero G., Mejia J.F., Di Tommaso D., Piaggesi A., Warrior P.A., Systematic approach to discover and characterize natural plant biostimulants, Frontiers in Plant Science, 2016, 7, s. 435.
[3] Waskiewicz A., Gładysz O., Beszterda M., Goliński P., Water stress and vegetable crops, Water Stress Crop Plants Sustain, Approach, 2016, 2, s. 393–411.
[4] Giordano M., Petropoulos S.A., Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress, Agriculture, 2021, 11, s. 463.
[5] Sierra S., Borges A.A., Herrera A.J., Luis J.C., New Biostimulants Screening Method for Crop Seedlings under Water Deficit Stress, Agronomy 2022, 12, 728. DOI: org/10.3390/agronomy12030728.
[6] Kopcewicz J., Lewak S., Fizjologia roślin, Wydawnictwo Naukowe PWN, Warszawa 2012.
[7] Fizjologia roślin. Od teorii do nauk stosowanych, (red.) M. Kozłowska M., PWRiL, Poznań 2007.
[8] Blum A. Drought Resistance, Water-Use Eficiency, and Yield Potential – Are they Compatible, Dissonant, or Mutually Exclusive? Australian Journal of Agricultural Research, 2005, 56, 1159–1168.
[9] Bray E., Bailey-Serres J., Weretlinyk E., Responses to Abiotic Stresses, [w:] Bio- chemistry and Molecular Biology of Plants, (red.) B. Buchanan, W. Gruissem, R. Jones, American Society of Plant Physiology, 2000, s. 1158–1203.
[10] Karczmarczyk S., Nowak L., Nawadnianie roślin, PWRiL, Poznań 2006.
[11] Eyvaz M., Drought: effects and management, IntechOpen, Londyn 2022.
[12] He Y., Fang J., Xu W., Shi P., Substantial Increase of Compound Droughts and Heatwaves in Wheat Growing Seasons Worldwide, International Journal of Climatology, 2021, 10(42), s. 5038–5054.
[13] Dolan F., Lamontagne J., Link R., Hejazi M., Reed P., Edmonds J., Evaluating the Economic Impact of Water Scarcity in a Changing World, Nature Communications, 2021, 12, s. 1915.
[14] Lopez-Nicolas A., Pulido-Velazquez M., Macian-Sorribes H., Economic Risk Assessment of Drought Impacts on Irrigated Agriculture, Journal of Hydrology, 2017, 550, s. 580–589.
[15] Barnabas B., Jager K., Feher A., The effect of drought and heat stress on reproductive processes in cereals, Plant, Cell & Environment, 2008, 31, s. 11–38.
[16] Costa J.M., Ortuño M.F., Chaves M.M., Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture, Journal of Integrative Plant Biology, 2007, 49, s. 1421–1434.
[17] Wilkinson S., Davies W.J., Drought, ozone, ABA and ethylene: new insights from cell to plant to community, Plant, Cell & Environment, 2010, 33(4), s. 510–525. doi.org/10.1111/j.1365-3040.2009.02052.x.
[18] Fang Y., Xiong L., General mechanisms of drought response and their application in drought resistance improvement in plants, Cellular and Molecular Life Sciences, 2015, 72, s. 673–689. doi.org/10.1007/s00018-014-1767-0.
[19] Roohi E., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M., Siosemardeh A., Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley, Journal of Agricultural Science and Technology, 2013, 15, s. 215–228.
[20] Galon L., Concenço G., Ferreira E.A., Aspiazú I., da Silva A.F., Giacobbo C.L., Andres A., Influence of biotic and abiotic stress factors on physiological traits of sugarcane varieties, [w:] Photosynthesis, (red.) Z. Dubinsky, InTech, Rijeka, Croatia 2013.
[21] Jastrzębska M., Kostrzewska M.K., Wanic M., Wpływ deficytu wody i interakcji międzygatunkowych na wybrane parametry fizjologiczne roślin jęczmienia jarego i koniczyny czerwonej, Fragmenta Agronomica, 2016, 33(4), s. 44–59.
[22] Akıncı Ş., Lösel D.M., Plant water-stress response mechanisms, [w:] Water Stress, (red.) I.Md.M. Rahman, InTech, Rijeka, Croatia, 2012.
[23] Bertamini M., Zulini L., Muthuchelian K., Nedunchezhian N., Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants, Photosynthetica, 2006, 44, s. 151–154.
[24] Lawlor D.W., Tezara W., Causes of decreased photosynthetic rate and metabolic capacity in waterdeficient leaf cells: a critical evaluation of mechanisms and integration of processes, Annals of Botany, 2009, 103, s. 561–579.
[25] Carrão H., Naumann G., Barbosa P., Mapping global patterns of drought risk: An empirical framework based on sub-nationalestimates of hazard, exposure, and vulnerability, Global Environmental Change, 2016, 39, s. 108–124.
[26] Wilhite D.A., Quantification of agricultural drought for effective drought mitigation and preparedness, Key issues and challenges, [w:] (red.) M.V.K. Sivakumar, R.P. Motha, D.A. Wilhite, D.A. Wood, Agricultural Drought Indices: Proceedings of an Expert Meeting, June 2–4, 2010, Murcia, Spain, World Meteorological Organization, Geneva 2011, s. 13–21.
[27] Monneveux P., Okono A., Ribaut J.M., Facing the challenges of global agriculture today: what can we do about drought?, Frontiers Physiology, 2013, 4, s. 289. doi.org/10.3389/fphys.2013.00289.
[28] Reguera M., Peleg Z., Blumwald E., Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops, Biochimica Biophysica Acta-Gene Regulatory Mechanism, 2012, 1819(2), s. 186–194. doi.org/10.1016/j.bbagrm.2011.08.005.
[29] James C., 20th Anniversary (1996 to 2015) of the Global Commercialization of BiotechCrops and Biotech Crop Highlights in 2015, ISAAA Brief nr 51, ISAAA, Ithaca, NY, 2015.
[30] Szmidt-Jaworska A, Kopcewicz J., Fizjologia roślin, Wydawnictwo Naukowe PWN, Warszawa 2021, s. 191–194.
[31] Hinsinger P., Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: a review, Plant and Soil, 2001, 237(2), s. 173–195.
[32] Epstein E., Bloom A.J., Mineral Nutrition of Plants: Principles and Perspectives, Sinauer Associates Inc. Sunderland, 2005.
[33] Gupta N., Gaurav S.S., Kumar A., Molecular Basis of Aluminium Toxicity in Plants A Review, American Journal of Plant Sciences, 2013, 4, s. 21–37.
[34] Taiz L., Zeiger E., Plant Physiology, Sinauer Associates Inc., Sunderland 2010.
[35] Marschner H., Mineral Nutrition of Higher Plants, Academic Press, Australia, 2012.
[36] Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A., The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants, Chemical Biological Technologies Agriculture, 2017, 4, s. 5.
[37] Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019.
[38] Du Jardin P., Plant biostimulants: Definition, concept, main categories and regulation, Scienta Horticulturae, 2015, 16, s. 3–14.
[39] Mackiewicz-Walec E., Olszewska M., Biostimulants in the Production of Forage Grasses and Turfgrasses, Agriculture, 2023, 13, s. 1796. doi.org/10.3390/agriculture13091796.
[40] Kulkarni M., Nikam T., Biostimulants: Definition, classification and role in horticulture, Journal of Pharmacognosy and Phytochemistry, 2019, 8(2), s. 245–252.
[41] Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M., Bonini P., Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis, Frontiers in Plant Science, 2014, 5, s. 448.
[42] Stirk W.A., Tarkowská D., Turečová V., Strnad M., Van Staden J., Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima, Journal of Applied Phycology, 2014, 26(1), s. 561–567.
[43] Bulgari R., Franzoni G., Ferrante A., Biostimulants and crop responses: a review, Biological Agriculture & Horticulture, 2015, 31(1), s. 1–17.
[44] Sharma H.S.S., Fleming C., Selby C., Suppression of water stress-induced abscisic acid accumulation by exopolysaccharides from Piriformospora indica is dependent on pattern recognition receptors and mitogen-activated protein kinases, Plant Physiology,
2014, 164(4), s. 1686–1698.
[45] Calvo P., Nelson L., Kloepper J.W., Agricultural uses of plant biostimulants, Plant and Soil, 2014, 383(1–2), s. 3–41.
[46] Fernandes Â., Chaski C., Pereira C., Kostić M., Rouphael Y., Soković M., Barros L., Petropoulos S.A., Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit, Horticulturae, 2022, 8, s. 645. doi.org/10.3390/horticulturae8070645.
[47] Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A., Craigie J., Norrie J., Prithiviraj B., Seaweed extracts as biostimulants of plant growth and development, Journal Plant Growth Regulation, 2009, 28, s. 386–399. doi.
org/10.1007/s00344-009-9103-x.
[48] Craigie J., Seaweed extract stimuli in plant science and agriculture, Journal Applied Phycology, 2011, 23, s. 371–393. doi.org/10.1007/s10811-010-9560-4.
[49] Spann T.M., Little H.A., Applications of a commercial extract of the brown sea-weed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’ sweet orange nursery trees, Hortscience, 2011, 46(4), s. 577–582.
[50] Elansary H.O., Skalicka-Woźniak K., King I.W., Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments, Plant Physiology Biochemistry, 2016, 105, s. 310–320. doi.org/10.1016/j.plaphy.2016.05.024.
[51] García-García A.L., García-Machado F.J., Borges A.A., Morales-Sierra S., Boto A., Jiménez-Arias D., Pure Organic Active Compounds Against Abiotic Stress: A Biostimulant Overview, Frontiers Plant Service 2020, 11, s. 1839.
[52] Rai N., Rai S.P., Sarma B.K., Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto- and Bio-Stimulants, Frontiers Sustainable Food Systems, 2021, 5, s. 754–853. doi: 10.3389/fsufs.2021.754853.
[53] Sible C.N., Seebauer J.R., Below F.E., Plant Biostimulants: A Categorical Review, Their Implications for Row Crop Production, and Relation to Soil Health Indicators, Agronomy, 2021, 11, s. 1297.
[54] Sikorska A., Gugała M., Biostymulatory – moda czy potrzeba?, Mazowiecki Ośrodek Doradztwa Rolniczego, Siedlce, 2017.
[55] Hernandiz A.E., Jiménez-Arias D., Morales-Sierra S., Borges A.A., De Diego N., Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario, Frontiers in Plant Science, 13, 944066, 2022.
[56] Jiménez-Arias D., García-Machado F.J., Morales-Sierra S., Luis J.C., Suarez E., Hernández M., Valdés F., Borges A.A., Lettuce Plants Treated with L-Pyroglutamic Acid Increase Yield under Water Deficit Stress, Environmental Experimental Botany, 2019, 158, s. 215–222.
[57] Jiménez-Arias D., García-Machado F.J., Morales-Sierra S., Suárez E., Pérez J.A., Luis J.C., Garrido-Orduña C., Herrera A.J., Valdés F., Sandalio L.M., Borges A.A., Menadione sodium bisulphite (MSB): Beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants, Environmental and Experimental Botany, 2019, 157, s. 161–170. doi.org/10.1016/j.envexpbot.2018.10.009.
[58] Jiménez-Arias D., Morales-Sierra S., Borges A.A., Díaz D.D., Biostimulant Nanoencapsulation: The New Keystone to Fight Hunger, Journal Agricultural Food Chemistry, 2020, 68, s. 7083–7085.
[59] Rabêlo V.M., Magalhães P.C., Bressanin L.A., Carvalho D.T., dos Reis C.O., Karam D., Doriguetto A.C., dos Santos M.H., Santos Filho P.R.d.S., de Souza T.C., The Foliar Application of a Mixture of Semisynthetic Chitosan Derivatives Induces Tolerance to Water Deficit in Maize, Improving the Antioxidant System and Increasing Photosynthesis and Grain Yield, Scientific Reports, 2019, 9, s. 8164.
[60] Shemi R., Wang R., Gheith E.S.M.S., Hussain H.A., Hussain S., Irfan M., Cholidah L., Zhang K., Zhang S., Wang L., Effects of Salicylic Acid, Zinc and Glycine Betaine on Morpho-Physiological Growth and Yield of Maize under Drought Stress, Scientific
Reports, 2021, 11, s. 3195.
[61] Peripolli M., Dornelles S.H.B., Lopes S.J., Tabaldi L.A., Trivisiol V.S., Rubert J., Application of biostimulants in tomato subjected to water deficit: Physiological, enzymatic and production responses, Revista Brasileira de Engenharia Agrícola e Ambiental, 25 (2), 2021.
[62] Colla G., Rouphael Y., Biostimulants in horticulture, Scienta Horticulturae, 2015, 196, s. 1–134.
[63] Fernandes Â., Figueiredo S., Finimundy T.C., Pinela J., Tzortzakis N., Ivanov M., Sokovi M., Ferreira I.C.F.R., Petropoulos S.A., Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application, Sustainability, 2021, 13, s. 68–69.
[64] Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B., Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress, Molecules, 2019, 24, s. 2452.
[65] Rigano M.M., Lionetti V., Raiola A., Bellincampi D., Barone A., Pectic enzymes as potential enhancers of ascorbic acid production through the d-galacturonate pathway in Solanaceae, Plant Science, 2018, 266, s. 55–63.
[66] Guo Y.Y., Yu H.Y., Kong D.S., Yan F., Zhang Y.J., Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedling, Photosynthetica, 2016, 54, s. 1–7.
[67] Sato S., Kamiyama M., Iwara T., Makita N., Furukawa H., Ikeda H., Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicum esculentum by distrupting specific physiological processes in male reproductive development, Annalas Botany, 2006, 97, s. 731–738.
[68] Ertani A., Pizzeghello D., Francioso O., Sambo P., Sanchez-Cortes S., Nardi S., Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches, Frontiers Plant Science, 2014, 5, s. 375.
[69] Erba D., Casiraghi M.C., Ribas-Agustí A., Cáceres R., Marfà O., Castellari M., Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by difeeren agronomic techniques, Journal Food Composition Analysis, 2013, 31, s. 245–251.
[70] Goñi O., Quille P., O’Connell S., Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants, Plant Physiology and Biochemistry, 2018, 126, s. 63–73.
[71] Rezaei-Chiyaneh E., Mahdavikia H., Alipour H., Dolatabadian A., Battaglia M.L., Harrison M.T., Biostimulants alleviate water deficit stress and enhance essential oil productivity: a case study with savory, Scientific Reports, 2023, 13, s. 720.
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Anna Sikorska, Ewelina Pietrzak, Marek Gugała

Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 3
Number of citations: 0