Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • Čeština
    • Deutsch
    • English
    • Español (España)
    • Français (France)
    • Français (Canada)
    • Hrvatski
    • Italiano
    • Język Polski
    • Srpski
    • Українська
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • Čeština
  • Deutsch
  • English
  • Español (España)
  • Français (France)
  • Français (Canada)
  • Hrvatski
  • Italiano
  • Język Polski
  • Srpski
  • Українська

HERBALISM

Effect of naringenin on antioxidative response and oxidative stress status in the lenses of diabetic rats
  • Home
  • /
  • Effect of naringenin on antioxidative response and oxidative stress status in the lenses of diabetic rats
  1. Home /
  2. Archives /
  3. Vol. 4 No. 1 (2018): HERBALISM /
  4. Artykuły

Effect of naringenin on antioxidative response and oxidative stress status in the lenses of diabetic rats

Authors

  • Weronika Wojnar Katedra i Zakład Farmakognozji i Fitochemii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach https://orcid.org/0000-0002-3013-7564
  • Maria Zych Katedra i Zakład Farmakognozji i Fitochemii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach https://orcid.org/0000-0002-7231-0505
  • Ilona Kaczmarczyk-Sedlak Katedra i Zakład Farmakognozji i Fitochemii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach https://orcid.org/0000-0002-3137-1694

DOI:

https://doi.org/10.12775/HERB.2018.002

Keywords

naringenin, lenses, rats, diabetes, oxidative stress

Abstract

Naringenin is a naturally occurring flavonoid with an antioxidative activity. Among many, well-documented pharmacological properties, it reveals a beneficial effect on ocular structures in experimental animals. However, there is no report describing an effect of naringenin on oxidative stress parameters in the lenses of diabetic rats. Since hyperglycemia may induce oxidative stress and eventually cataract formation, the aim of this study was to evaluate the effect of naringenin administered orally at the doses of 50 and 100 mg/kg on selected oxidative stress parameters in the lenses of diabetic rats. The study was conducted on male rats, from which, after 4 weeks of naringenin administration, the lenses were isolated. In homogenates prepared from the lenses, total antioxidative response, total oxidative status, oxidative stress index as well as protein and non-protein thiol groups level were assessed. Obtained results indicate, that naringenin shows beneficial, antioxidative effect in the lenses of diabetic rats.

References

Erlund I., Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology, Nutrition Research, 2004, 24, s. 851–874.

Cavia-Saiz M., Busto M.D., Pilar-Izquierdo M.C., Ortega N., Perez-Mateos M., Muniz P., Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study, Journal of the Science of Food and Agriculture, 2010, 90, s. 1238–1244.

Bozorgi M., Memariani Z., Mobli M., Surmaghi M.H.S., Shams-Ardekani M.R., Rahimi R., Five pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology, The Scientific World Journal, 2013, 2013, s. 1–33.

Bolling B.W., Blumberg J.B., Chen C.-Y. O., The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins, Food Chemistry, 2010, 123, s. 1040–1047.

Reis P.M.C.L., Dariva C., Vierira G.A.B., Hense H., Extraction and evaluation of an-tioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety, Journal of Food Engineering, 2016, 173, s. 116–123.

Bimakr M., Rahman R.A., Ganjloo A., Winter melon (Benincasa hispida) seeds and impact of extraction on composition [w:] Processing and Impact on Active Components in Food, (red.) Preedy V. Elsevier Inc., 2014. s. 407–414.

Kamara B.I., Brandt E.V., Ferreira D., Joubert E., Polyphenols from Honeybush tea (Cyc-lopia intermedia), Journal of Agricultural and Food Chemistry, 2003, 51, s. 3874–3879.

Volpi N., Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis, Electrophoresis, 2004, 25, s. 1872–1878.

Świeca M., Gawlik-Dziki U., Dziki D., Baraniak B., Kiełki brokułu jako źródło poten-cjalnie bioprzyswajalnych antyoksydantów, Bromatologia i Chemia Toksykologiczna, 2012, 45, s. 488–493.

Świeca M., Baraniak B., Influence of elicitation with H2O2 on phenolics content, antioxi-dant potential and nutritional quality of Lens culinaris sprouts, Journal of the Science of Food and Agriculture, 2014, 94, s. 489–496.

Tomas-Barberan F.A., Clifford M.N., Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 2000, 80, s. 1073–1080.

Heim K.E., Taqliaffero A.R., Bobilya D.J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, The Journal of Nutritional Biochemistry, 2002, 13, s. 572–584.

van Acker S.A.B.E., de Groot M., van den Berg D.J., Tromp M.N.J.L., den Kelder D.O., van der Vijgh W.J.F., Bast A., A quantum chemical explanation of the antioxidant activity of flavonoids, Chemical Research in Toxicology, 1996, 9, s. 1305–1312.

Kapoor R., Kakkar P., Naringenin accords hepatoprotection from streptozotocin indu-ced diabetes in vivo by modulating mitochondrial dysfunction and apoptotic signaling cascade, Toxicology Reports, 2014, 1, s. 569–581.

Annadurai T., Muralidharan A.R., Joseh T., Hsu M.J., Thomas P.A., Geraldine P., Anti-hyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-ni-cotinamide-induced experimental diabetic rats, Journal of Physiology and Biochemistry, 2012, 68, s. 307–318. [16] Shen Y., Zhang W.Y., Chiou G.C., Effect of naringenin on NaIO(3)-induced retinal pigment epithelium degeneration and laser-induced choroidal neovascularization in rats, International Journal of Ophthalmology, 2010, 3, s. 5–8.

Lin J.-L., Wang Y.-D., Ma Y., Zhong Ch.-M., Zhu M.-R., Chen W.-P., Lin B.-Q., Protective effects of naringenin eye drops on N-methyl-N-nitrosourea-induced photoreceptor cell death in rats, International Journal of Ophthalmology, 2014, 7, s. 391–396.

Kara S., Gencer B., Karaca T., Tufan H.A., Arikan S., Ersan I., Karaboga I., Hanci V., Protective effect of hesperetin and naringenin against apoptosis in ischemia/reper-fusion-induced retinal injury in rats, The Scientific World Journal, 2014, 2014, s. 1–8.

Sayin N., Kara N., Pekel G., Ocular complications of diabetes mellitus, World Journal of Diabetes, 2015, 6, s. 92–108.

Vinson J.A., Oxidative stress in cataracts, Pathophysiology, 2006, 13, s. 151–162.

Furman B.L., Streptozotocin-induced diabetic models in mice and rats, Current Pro-tocols in Pharmacology, 2015, 70, s. 5.47.1–5.47.20.

Erel O., A novel automated method to measure total antioxidant response against potent free radical reactions, Clinical Biochemistry, 2004, 37, s. 112–119.

Erel O., A new automated colorimetric method for measuring total oxidant status, Clinical Biochemistry, 2005, 38, s. 1103–1111.

Kosecik M., Erel O., Sevinc E., Selek S., Increased oxidative stress in children exposed to passive smoking, International Journal of Cardiology, 2005, 100, s. 61–64.

Ellman G.L., Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, 1959, 82, s. 70–77.

Sedlak J., Lindsay R.H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Analytical Biochemistry, 1968, 25, s. 192–205.

Rolo A.P., Palmeira C.M., Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress, Toxicology and Applied Pharmacology, 2006, 212, s. 167–178.

Moussa S.A., Oxidative stress in diabetes mellitus, Romanian Journal of Biophysics, 2008, 18, s. 225–236.

West I.C., Radicals and oxidative stress in diabetes, Diabetic Medicine, 2000, 17, s. 171–180.

Threatt J., Williamson J.F., Huynk K., Davis R.M., Hermayer K., Ocular disease, know-ledge and technology applications in patients with diabetes, The American Journal of the Medical Sciences, 2013, 345, s. 266–270.

Thiagarajan R., Manikandan R., Antioxidants and cataract, Free Radical Research, 2013, 47, s. 337–345.

Bisbal C., Lambert K., Aviqnon A., Antioxidants and glucose metabolism disorders, Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, s. 439–446.

Sadowska-Bartosz I., Bartosz G., Grune T., Sereikaite J., Role of oxidative, nitrative, and chlorinative protein modifications in aging and age-related diseases, Oxidative Medicine and Cellular Longevity 2018.

Stefek M., Natural flavonoids as potential multifunctional agents in prevention of dia-betic cataract, Interdisciplinary Toxicology, 2011, 4, s. 69–77.

Patil K.K., Meshram R.J., Dhole N.A., Gacche R.N., Role of dietary flavonoids in ame-lioration of sugar induced cataractogenesis, Archives of Biochemistry and Biophysics, 2016, 593, s. 1–11.

Acer S., Pekel G., Küçükatay V., Karabulut A., Yağcı R., Çetin E.N., Akyer Ş.P., Şahin B., Oxidative stress of crystalline lens in rat menopausal model, Arquivos Brasileiros De Oftalmologia, 2016, 79, s. 222–225.

Ozkol H.U., Koyuncu I., Tuluce Y., Dilsiz N., Soral S., Ozkol H., Anthocyanin-rich extract from Hibiscus sabdariffa calyx counteracts UVC-caused impairments in rats, Pharmaceutical Biology, 2015, 53, s. 1435–1441.

Pisoschi A.M., Pop A., The role of antioxidants in the chemistry of oxidative stress: A review, European Journal of Medicinal Chemistry, 2015, 97, s. 55–74.

Dickinson D., Forman H.J., Glutathione in defense and signaling: lessons from a small thiol, Annals of the New York Academy of Sciences, 2002, 973, s. 488–504.

Wojnar W., Kaczmarczyk-Sedlak I., Zych M., Diosmin ameliorates the effects of oxi-dative stress in lenses of streptozotocin-induced type 1 diabetic rats, Pharmacological Reports, 2017, 69, s. 995–1000.

Suryanarayana P., Saraswat M., Mrudula T., Krishna T.P., Krishnaswamy K., Reddy G.B., Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats, Investigative Ophthalmology and Visual Science, 2005, 46, s. 2092–2099.

Suryanarayana P., Saraswat M., Petrash J.M., Reddy G.B., Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats, Molecular Vision, 2007, 13, s. 1291–1297.

Reddy V.S., Reddy G.B., Role of crystallins in diabetic complications, Biochimica et Biophysica Acta, 2016, 1860, s. 269–277.

Sathaye S.,Somani G., Bioactive fraction of Saraca indica prevents diabetes induced cataractogenesis: An aldose reductase inhibitory activity, Pharmacognosy Magasine, 2015, 11, s. 102.

El-Razek F.H.A., El-Metwally E.M., Shehab G.M.G., Hassan A.A., Gomaa A.N., Effects of cactus pear (Opuntia ficus indica) juice on oxidative stress in diabetic cataract rats, Saudi Journal of Health Sciences, 2012, 1, s. 23–29.

Zhao W., Devamanoharan P.S., Henein M., Ali A.H., Diabetes-induced biochemical changes in rat lens: Attenuation of cataractogenesis by pyruvate, Diabetes, Obesity and Metabolism, 2000, 2, s. 165–174.

HERBALISM

Downloads

  • PDF (Język Polski)

The publisher's shop:

Go to shop

Published

2021-12-08

How to Cite

1.
WOJNAR, Weronika, ZYCH, Maria and KACZMARCZYK-SEDLAK, Ilona. Effect of naringenin on antioxidative response and oxidative stress status in the lenses of diabetic rats. HERBALISM. Online. 8 December 2021. Vol. 4, no. 1, pp. 17-30. [Accessed 26 December 2025]. DOI 10.12775/HERB.2018.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 4 No. 1 (2018): HERBALISM

Section

Artykuły

License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 834
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • Čeština
  • Deutsch
  • English
  • Español (España)
  • Français (France)
  • Français (Canada)
  • Hrvatski
  • Italiano
  • Język Polski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

naringenin, lenses, rats, diabetes, oxidative stress
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop