Wpływ naryngeniny na odpowiedź antyoksydacyjną oraz status oksydacyjny w soczewkach szczurów z cukrzycą
DOI :
https://doi.org/10.12775/HERB.2018.002Mots-clés
naryngenina, soczewki, szczury, cukrzyca, stres oksydacyjnyRésumé
Naryngenina to naturalnie występujący flawonoid o działaniu przeciwutleniającym. Wśród wielu udokumentowanych działań farmakologicznych, opisany jest również korzystny wpływ tego związku na struktury oka w różnych modelach eksperymentalnych. Brak jest jednak doniesień opisujących wpływ naryngeniny na parametry związane ze stresem oksydacyjnym w soczewkach szczurów w przebiegu cukrzycy. Ze względu na fakt, iż cukrzyca może indukować powstawanie stresu oksydacyjnego oraz w konsekwencji rozwój zaćmy, celem pracy była analiza wpływu naryngeniny podawanej doustnie w dawkach 50 i 100 mg/kg na wybrane parametry związane ze stresem oksydacyjnym w soczewkach szczurów z cukrzycą. Badanie wykonano na samcach szczurów, z których po 4 tygodniach podawania naryngeniny wyizolowano soczewki. W uzyskanych z soczewek homogenatach oznaczono całkowitą odpowiedź antyoksydacyjną, całkowity status oksydacyjny, współczynnik stresu oksydacyjnego oraz zawartość białkowych i niebiałkowych grup tiolowych. Uzyskane wyniki świadczą o korzystnym, przeciwutleniającym wpływie naryngeniny na soczewkę oka u szczurów z wywołaną cukrzycą.
Références
Erlund I., Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology, Nutrition Research, 2004, 24, s. 851–874.
Cavia-Saiz M., Busto M.D., Pilar-Izquierdo M.C., Ortega N., Perez-Mateos M., Muniz P., Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study, Journal of the Science of Food and Agriculture, 2010, 90, s. 1238–1244.
Bozorgi M., Memariani Z., Mobli M., Surmaghi M.H.S., Shams-Ardekani M.R., Rahimi R., Five pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology, The Scientific World Journal, 2013, 2013, s. 1–33.
Bolling B.W., Blumberg J.B., Chen C.-Y. O., The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins, Food Chemistry, 2010, 123, s. 1040–1047.
Reis P.M.C.L., Dariva C., Vierira G.A.B., Hense H., Extraction and evaluation of an-tioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety, Journal of Food Engineering, 2016, 173, s. 116–123.
Bimakr M., Rahman R.A., Ganjloo A., Winter melon (Benincasa hispida) seeds and impact of extraction on composition [w:] Processing and Impact on Active Components in Food, (red.) Preedy V. Elsevier Inc., 2014. s. 407–414.
Kamara B.I., Brandt E.V., Ferreira D., Joubert E., Polyphenols from Honeybush tea (Cyc-lopia intermedia), Journal of Agricultural and Food Chemistry, 2003, 51, s. 3874–3879.
Volpi N., Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis, Electrophoresis, 2004, 25, s. 1872–1878.
Świeca M., Gawlik-Dziki U., Dziki D., Baraniak B., Kiełki brokułu jako źródło poten-cjalnie bioprzyswajalnych antyoksydantów, Bromatologia i Chemia Toksykologiczna, 2012, 45, s. 488–493.
Świeca M., Baraniak B., Influence of elicitation with H2O2 on phenolics content, antioxi-dant potential and nutritional quality of Lens culinaris sprouts, Journal of the Science of Food and Agriculture, 2014, 94, s. 489–496.
Tomas-Barberan F.A., Clifford M.N., Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 2000, 80, s. 1073–1080.
Heim K.E., Taqliaffero A.R., Bobilya D.J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, The Journal of Nutritional Biochemistry, 2002, 13, s. 572–584.
van Acker S.A.B.E., de Groot M., van den Berg D.J., Tromp M.N.J.L., den Kelder D.O., van der Vijgh W.J.F., Bast A., A quantum chemical explanation of the antioxidant activity of flavonoids, Chemical Research in Toxicology, 1996, 9, s. 1305–1312.
Kapoor R., Kakkar P., Naringenin accords hepatoprotection from streptozotocin indu-ced diabetes in vivo by modulating mitochondrial dysfunction and apoptotic signaling cascade, Toxicology Reports, 2014, 1, s. 569–581.
Annadurai T., Muralidharan A.R., Joseh T., Hsu M.J., Thomas P.A., Geraldine P., Anti-hyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-ni-cotinamide-induced experimental diabetic rats, Journal of Physiology and Biochemistry, 2012, 68, s. 307–318. [16] Shen Y., Zhang W.Y., Chiou G.C., Effect of naringenin on NaIO(3)-induced retinal pigment epithelium degeneration and laser-induced choroidal neovascularization in rats, International Journal of Ophthalmology, 2010, 3, s. 5–8.
Lin J.-L., Wang Y.-D., Ma Y., Zhong Ch.-M., Zhu M.-R., Chen W.-P., Lin B.-Q., Protective effects of naringenin eye drops on N-methyl-N-nitrosourea-induced photoreceptor cell death in rats, International Journal of Ophthalmology, 2014, 7, s. 391–396.
Kara S., Gencer B., Karaca T., Tufan H.A., Arikan S., Ersan I., Karaboga I., Hanci V., Protective effect of hesperetin and naringenin against apoptosis in ischemia/reper-fusion-induced retinal injury in rats, The Scientific World Journal, 2014, 2014, s. 1–8.
Sayin N., Kara N., Pekel G., Ocular complications of diabetes mellitus, World Journal of Diabetes, 2015, 6, s. 92–108.
Vinson J.A., Oxidative stress in cataracts, Pathophysiology, 2006, 13, s. 151–162.
Furman B.L., Streptozotocin-induced diabetic models in mice and rats, Current Pro-tocols in Pharmacology, 2015, 70, s. 5.47.1–5.47.20.
Erel O., A novel automated method to measure total antioxidant response against potent free radical reactions, Clinical Biochemistry, 2004, 37, s. 112–119.
Erel O., A new automated colorimetric method for measuring total oxidant status, Clinical Biochemistry, 2005, 38, s. 1103–1111.
Kosecik M., Erel O., Sevinc E., Selek S., Increased oxidative stress in children exposed to passive smoking, International Journal of Cardiology, 2005, 100, s. 61–64.
Ellman G.L., Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, 1959, 82, s. 70–77.
Sedlak J., Lindsay R.H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Analytical Biochemistry, 1968, 25, s. 192–205.
Rolo A.P., Palmeira C.M., Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress, Toxicology and Applied Pharmacology, 2006, 212, s. 167–178.
Moussa S.A., Oxidative stress in diabetes mellitus, Romanian Journal of Biophysics, 2008, 18, s. 225–236.
West I.C., Radicals and oxidative stress in diabetes, Diabetic Medicine, 2000, 17, s. 171–180.
Threatt J., Williamson J.F., Huynk K., Davis R.M., Hermayer K., Ocular disease, know-ledge and technology applications in patients with diabetes, The American Journal of the Medical Sciences, 2013, 345, s. 266–270.
Thiagarajan R., Manikandan R., Antioxidants and cataract, Free Radical Research, 2013, 47, s. 337–345.
Bisbal C., Lambert K., Aviqnon A., Antioxidants and glucose metabolism disorders, Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, s. 439–446.
Sadowska-Bartosz I., Bartosz G., Grune T., Sereikaite J., Role of oxidative, nitrative, and chlorinative protein modifications in aging and age-related diseases, Oxidative Medicine and Cellular Longevity 2018.
Stefek M., Natural flavonoids as potential multifunctional agents in prevention of dia-betic cataract, Interdisciplinary Toxicology, 2011, 4, s. 69–77.
Patil K.K., Meshram R.J., Dhole N.A., Gacche R.N., Role of dietary flavonoids in ame-lioration of sugar induced cataractogenesis, Archives of Biochemistry and Biophysics, 2016, 593, s. 1–11.
Acer S., Pekel G., Küçükatay V., Karabulut A., Yağcı R., Çetin E.N., Akyer Ş.P., Şahin B., Oxidative stress of crystalline lens in rat menopausal model, Arquivos Brasileiros De Oftalmologia, 2016, 79, s. 222–225.
Ozkol H.U., Koyuncu I., Tuluce Y., Dilsiz N., Soral S., Ozkol H., Anthocyanin-rich extract from Hibiscus sabdariffa calyx counteracts UVC-caused impairments in rats, Pharmaceutical Biology, 2015, 53, s. 1435–1441.
Pisoschi A.M., Pop A., The role of antioxidants in the chemistry of oxidative stress: A review, European Journal of Medicinal Chemistry, 2015, 97, s. 55–74.
Dickinson D., Forman H.J., Glutathione in defense and signaling: lessons from a small thiol, Annals of the New York Academy of Sciences, 2002, 973, s. 488–504.
Wojnar W., Kaczmarczyk-Sedlak I., Zych M., Diosmin ameliorates the effects of oxi-dative stress in lenses of streptozotocin-induced type 1 diabetic rats, Pharmacological Reports, 2017, 69, s. 995–1000.
Suryanarayana P., Saraswat M., Mrudula T., Krishna T.P., Krishnaswamy K., Reddy G.B., Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats, Investigative Ophthalmology and Visual Science, 2005, 46, s. 2092–2099.
Suryanarayana P., Saraswat M., Petrash J.M., Reddy G.B., Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats, Molecular Vision, 2007, 13, s. 1291–1297.
Reddy V.S., Reddy G.B., Role of crystallins in diabetic complications, Biochimica et Biophysica Acta, 2016, 1860, s. 269–277.
Sathaye S.,Somani G., Bioactive fraction of Saraca indica prevents diabetes induced cataractogenesis: An aldose reductase inhibitory activity, Pharmacognosy Magasine, 2015, 11, s. 102.
El-Razek F.H.A., El-Metwally E.M., Shehab G.M.G., Hassan A.A., Gomaa A.N., Effects of cactus pear (Opuntia ficus indica) juice on oxidative stress in diabetic cataract rats, Saudi Journal of Health Sciences, 2012, 1, s. 23–29.
Zhao W., Devamanoharan P.S., Henein M., Ali A.H., Diabetes-induced biochemical changes in rat lens: Attenuation of cataractogenesis by pyruvate, Diabetes, Obesity and Metabolism, 2000, 2, s. 165–174.
Téléchargements
The publisher's shop:
Publié-e
Comment citer
Numéro
Rubrique
Licence
![Creative Commons License](http://i.creativecommons.org/l/by-nd/4.0/88x31.png)
Cette œuvre est sous licence Creative Commons Attribution - Pas de Modification 4.0 International.
Stats
Number of views and downloads: 668
Number of citations: 0