Wpływ hesperydyny na rozwój stresu oksydacyjnego w sercu szczurów z cukrzycą typu 1
DOI:
https://doi.org/10.12775/HERB.2023.004Słowa kluczowe
cukrzyca typu 1, hesperydyna, stres oksydacyjny, serceAbstrakt
W przebiegu cukrzycy obserwuje się hiperglikemię, która jest jedną z przyczyn rozwoju stresu oksydacyjnego uszkadzającego różne tkanki i narządy organizmu, w tym serce. Suplementacja związków pochodzenia roślinnego o właściwościach antyoksydacyjnych może być skuteczną metodą zapobiegania powstawaniu stresu oksydacyjnego. W niniejszym badaniu określono rolę flawonoidu hesperydyny na parametry stresu oksydacyjnego w tkance serca w przebiegu cukrzycy typu 1. W tym celu hesperydynę w dawkach 50 i 100 mg/kg podawano per os przez 28 dni samcom szczurów szczepu Wistar, u których wywołano cukrzycę poprzez
wstrzyknięcie dootrzewnowe streptozotocyny. U gryzoni z cukrzycą wykazano wzrost aktywności katalazy, peroksydazy glutationowej oraz zawartości aldehydu dimalonowego w sercu. Zastosowanie hesperydyny w obu dawkach spowodowało
spadek aktywności dysmutazy ponadtlenkowej, zmniejszenie zawartości aldehydu dimalonowego, natomiast efektem wyższej dawki flawonoidu było także obniżenie całkowitego statusu oksydacyjnego połączone ze wzrostem całkowitej odpowiedzi
antyoksydacyjnej. Można stwierdzić, że hesperydyna łagodzi zaburzenia równowagi oksydoredukcyjnej w tkance serca w przebiegu cukrzycy typu 1.
Bibliografia
Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., Shaw J.E., Bright D., Williams R., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition, Diabetes Research and Clinical Practice, 2019, 157, s. 107843.
Harreiter J., Roden M., Diabetes Mellitus-Definition, classification, diagnosis, screening and prevention, Wiener Klinische Wochenschrift, 2019, 131(Suppl. 1), s. 6–15.
Van der Wall E.E., Asymptomatic diabetes: screening by routine imaging beneficial?, Netherlands Heart Journal, 2015, 23(2), s. 79–81.
Hansen S.S., Aasum E., Hafstad A.D., The role of NADPH oxidases in diabetic cardiomyopathy, Biochimica et Biophysica Acta – Molecular Basis of Disease, 2017, 1864, s. 1908–1913.
Huynh K., Bernardo B.C., McMullen J.R., Ritchie R.H., Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways, Pharmacology & Therapeutics, 2014, 142, s. 375–415.
Kayama Y., Raaz U., Jagger A., Adam M., Schellinger I.N., Sakamoto M., Suzuki H., Toyama K., Spin J.M., Tsao P.S., Diabetic cardiovascular disease induced by oxidative stress, International Journal of Molecular Sciences, 2015, 16, s. 25234–25263.
Accord Study Group, Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes, Diabetes Care, 2016, 39(5), s. 701–708.
Gilbert R.E., Krum H., Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy, Lancet, 2015, 385(9982), s. 2107–2117.
Wang H.X., Ng T.B., Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities, Life Science, 1999, 65, s. 2663–2677.
Li Ch., Schluesener H., Health-promoting effects of the citrus flavanone hesperidin, Critical Reviews in Food Science and Nutrition, 2017, 57(3), s. 613–631.
Agrawal Y.O., Sharma P.K., Shrivastava B., Ojha S., Upadhya H.M., Arya D.S., Goyal S.N., Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats, PLOS One, 2014, 9, s. e111212.
Agrawal Y.O., Sharma P.K., Shrivastava B., Arya D.S., Goyal S.N., Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-γ receptor, Chemico-Biological Interactions, 2014, 219, s. 211–220.
Galati E.M., Trovato A., Kirjavainen S., Forestieri A.M., Rossitto A., Monforte M.T., Biological effects of hesperidin, a citrus flavonoid. (Note III): antihypertensive and diuretic activity in rat, Farmaco, 1996, 51, s. 219–221.
Ikemura M., Sasaki Y., Giddings J.C., Yamamoto J., Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats, Phytotherapy Research, 2012, 26(9), s. 1272–1277.
Ganeshpurkar A., Saluja A., The pharmacological potential of hesperidin, Indian Journal of Biochemistry & Biophysics, 2019, 56, s. 287–300.
Kumar B., Gupta S.K., Srinivasan B.P., Nag T.C., Srivastava S., Saxena R., Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats, Vascular Pharmacology, 2012, 57, s. 201–207.
Jin Y.R., Han X.H., Zhang Y.H., Lee J.J., Lim Y., Chung J.H., Yun Y.P., Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity, Atherosclerosis, 2007, 194(1), s. 144–152.
Yang Z., Liu Y., Deng W., Dai J., Li F., Yuan Y., Wu Q., Zhou H., Bian Z., Tang Q., Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes, Molecular Medicine Reports, 2014, 9(5), s. 1941–1946.
Trivedi P.P., Kushwaha S., Tripathi D.N., Jena G.B., Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat, Cardiovascular Toxicology, 2011, 11(3), s. 215–225.
Hanchang W., Khamchan A., Wongmanee N., Seedadee C., Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model, Life Sciences, 2019, 235, s. 116858.
Furman B.L., Streptozotocin-Induced Diabetic Models in Mice and Rats, Current Protocols in Pharmacology, 2015, 70, s. 1–20.
Goyal S.N., Reddy N.M., Patil K.R., Nakhate K.T., Ojha S., Patil C.R., Agrawal Y.O., Challenges and issues with streptozotocin-induced diabetes – A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics, Chemico-Biological Interactions, 2016, 244, s. 49–63.
Qinna N.A., Badwan A.A., Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats, Drug Design, Development and Therapy, 2015, 9, s. 2515–2525.
Lowry O.H., Rosebrough N.J., Farr A.I., Randall R.J., Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, 1951, 193, s. 265–275.
Buege J.A., Aust S.D., Microsomal lipid peroxidation, Methods in Enzymology, 1978, 52, s. 302–310.
Witko-Sarsat V., Friedlander M., Capeillère-Blandin C., Nguyen-Khoa T., Nguyen A.T., Zingraff J., Jungers P., Descamps-Latscha B., Advanced oxidation protein products as a novel marker of oxidative stress in uremia, Kidney International, 1996, 49,
s. 1304–1313.
Jagota S.K., Dani H.M., A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent, Analytical Biochemistry, 1982, 127, s. 178–182.
Erel O., A new automated colorimetric method for measuring total oxidant status, Clinical Biochemistry, 2005, 38, s. 1103–1111.
Erel O., A novel automated method to measure total antioxidant response against potent free radical reactions, Clinical Biochemistry, 2004, 37, s. 112–119.
Bramora P., Borymska W., Zych M., Kaczmarczyk-Sedlak I., Effect of naringenin on oxidative stress in the heart tissue of type 1 diabetic Wistar rats, Acta Poloniae Pharmaceutica – Drug Research, 2021, 78(5), s. 693–703.
Mutavdzin S., Gopcevic K., Stankovic S., Jakovljevic Uzelac J., Labudovic Borovic M., Djuric D., The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats, Oxidative Medicine and Cellular Longevity, 2019, s. 1342549.
Li C.L., Liu B., Wang Z.Y., Xie F., Qiao W., Cheng J., Kuang J.Y., Wang Y., Zhang M.X., Liu D.S., Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3, Journal of Molecular and Cellular Cardiology, 2020, 139, s. 98–112.
Ali T.M., Abo-Salem O.M., El Esawy B.H., El Askary A., The Potential Protective Effects of Diosmin on Streptozotocin-Induced Diabetic Cardiomyopathy in Rats, The American Journal of the Medical Sciences, 2020, 359(1), s. 32–41.
Talebi A.R., Mangoli E., Nahangi H., Anvari M., Pourentezari M., Halvaei I., Vitamin C attenuates detrimental effects of diabetes mellitus on sperm parameters, chromatin quality and rate of apoptosis in mice, European Journal of Obstetrics & Gynecology and Reproductive Biology, 2014, 181, s. 32–36.
Sun Y., Zhou S., Guo H., Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function, Metabolism, 2020, 102, s. 154002.
American Diabetes Association, 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019, Diabetes Care, 2019, 42(Suppl. 1), s. 90–102.
Larsson S.C., Wallin A., Håkansson N., Stackelberg O., Bäck M., Wolk A., Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases, International Journal of Cardiology, 2018, 262, s. 66–70.
Rani N., Bharti S., Bhatia J., Nag T.C., Ray R., Arya D.S., Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation, Chemico-Biological Interactions, 2016, 250, s. 59–67.
Sharma I., Aaradhya M., Kodikonda M., Naik P.R., Antihyperglycemic, antihyperlipidemic and antioxidant activity of phenolic rich extract of Brassica oleraceae var gongylodes on streptozotocin induced Wistar rats, SpringerPlus, 2015, 4, s. 212.
Bhatti R., Sharma S., Singh J., Ishar M.P., Ameliorative effect of Aegle marmelos leaf extract on early stage alloxan-induced diabetic cardiomyopathy in rats, Pharmaceutical Biology, 2011, 49(11), s. 1137–1143.
Aju B.Y., Rajalakshmi R., Mini S., Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats, Heliyon, 2019, 5(12), s. e02935.
Al-Numair K.S., Chandramohan G., Veeramani C., Alsaif M.A., Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats, Redox Report, 2015, 20(5), s. 198–209.
Rezaeyan A., Haddadi G.H., Hosseinzadeh M., Moradi M., Najafi M., Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue, Journal of Medical Physics, 2016, 41(3), s. 182–191.
Zhang N., Yang Z., Xiang S.Z., Jin Y.G., Wei W.Y., Bian Z.Y., Deng W., Tang Q.Z., Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy, Molecular and Cellular Biochemistry, 2016, 417(1–2), s. 87–96.
Bao H., Chen L.I., Icariin reduces mitochondrial oxidative stress injury in diabetic rat hearts, China Journal of Chinese Materia Medica, 2011, 36(11), s. 1503–1507.
Hayes J.P., Jenkins S.H., Individual Variation in Mammals, Journal of Mammalogy, 1997, 78(2), s. 274–293.
Jones D.P., Redox potential of GSH/GSSG couple: assay and biological significance, Methods in Enzymology, 2002, 348, s. 93–112.
Zhang Y.F., Meng N.N., Li H.Z., Wen Y.J., Liu J.T., Zhang C.L., Yuan X.H., Jin X.D., Effect of naringin on oxidative stress and endoplasmic reticulum stress in diabetic cardiomyopathy, China Journal of Chinese Materia Medica, 2018, 43(3), s. 596–602.
Soetikno V., Sari F.R., Sukumaran V., Lakshmanan A.P., Mito S., Harima M., Thandavarayan R.A., Suzuki K., Nagata M., Takagi R., Watanabe K., Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-
-MAPK signaling pathway, European Journal of Pharmaceutical Sciences, 2012, 47(3), s. 604–614.
Ibrahim S.S., Protective Effect of Hesperidin, a Citrus Bioflavonoid, on Diabetes-Induced Brain Damage in Rats, Journal of Applied Sciences Research, 2008, 4(1), s. 84–95.
Hazman Ö., Serhat O., Investigation of the anti-inflammatory effects of safranal on high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model, Inflammation, 2015, 38(3), s. 1012–1019.
Turhan U., Yilmaz E., Gul M., Melekoglu R., Turkoz Y., Ozyalin F., Parlakpinar H., Simsek Y., Investigation of the effect of gestational diabetes on fetal cardiac tissue in streptozotocin induced in rats, Acta Cirúrgica Brasileira, 2018, 33(4), s. 306–313.
Aslan M., Sabuncu T., Kocyigit A., Celik H., Selek S., Relationship between total oxidant status and severity of diabetic nephropathy in type 2 diabetic patients, Nutrition, Metabolism & Cardiovascular Diseases, 2007, 17(10), s. 734–740.
Dokumacioglu E., Iskender H., Musmul A., Effect of hesperidin treatment on α-Klotho/ FGF-23 pathway in rats with experimentally induced diabetes, Biomedicine & Pharmacotherapy, 2019, 109, s. 1206–1210.
Pobrania
Sklep wydawnictwa:
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 403
Liczba cytowań: 0