On certain Płonka’s constructions
DOI:
https://doi.org/10.12775/szhf.2025.031Schlagworte
Jerzy Płonka, regular identity, P-compatible identity, Płonka sum, P-dispersionAbstract
We would like to present and discuss certain ideas developed by Jerzy Płonka. Jerzy Płonka was a Polish algebraist whose scientific interests included equational logics considered in terms of the structure of the identities that define them. In this paper, we present two constructions by Jerzy Płonka, which served as tools in his work on semantics for classes determined by the so-called-compatible and regular identities. We are referring to the dispersion and the Płonka sum.
Literaturhinweise
Bonzio Stefano, Francesco Paoli, Michele Pra Baldi. 2022. Logics of variable inclusion. Vol. 59 of Trends in Logic Springer. https://doi.org/10.1007/978-3-031-04297-3
Chromik Wiesława. 1990. “On externally compatible identities of algebras”. Demonstratio
Mathematica 23(2): 345–355.
Chromik Wiesława, Katarzyna Hałkowska. 1991. “Subvarieties of the variety defined by
externally compatible identities of distributive lattices”. Demonstratio Mathematica 24(12): 345–350.
Gajewska-KurdzielKatarzyna, Krystyna Mruczek-Nasieniewska.2007. “The Lattice of Subvarieties of the Variety Defined by Externally Compatible Identities of Abelian Groups of Exponent ”. Studia Logica 85(3): 361–379. https://doi.org/10.1007/s11225-007-9038-9
Graczy´nska E. 1990. “On normal and regular identities”. Algebra Universalis 27(3): 387397. https://doi.org/10.1007/BF01190718
Graczy´nska Ewa. 1983. “On regular identities”. Algebra Universalis 17(1): 369–375. https://
doi.org/10.1007/BF01194544
Hałkowska Katarzyna, Barbara Cholewi´nska, Ramona Wiora. 1997. “Externally compatible identities of Abelian Groups”. Acta Universitatis Wratislaviensis 1890. Logika 17: 163-170. 1997.
Hałkowska Katarzyna. 1998. “Lattice of equational theories of-compatible varieties”. In: Logic at Work. Essays dedicated to the memory of Helena Rasiowa, ed. Ewa Orlowska. Title Studies in Fuzziness and Soft Computing. Heidelberg–NewYork: Springer. pp. 587-595.
Ježek Jaroslav. 1981a. “The lattice of equational theories. Part I”. Czechoslovak Mathemati
cal Journal 31: 127–157.
Ježek Jaroslav. 1981b. “The lattice of equational theories. Part II”. Czechoslovak Mathemat
ical Journal 31: 573–603.
Ježek Jaroslav. 1982. “The lattice of equational theories. Part III”. Czechoslovak Mathemat
ical Journal 32: 129–164.
Jónson Bjarni. 1968. “Equational classes of lattices”. Mathematica Scandinavica 22: 187-196.
Jónson Bjarni, Ivan Rival. 1979. “Lattice varieties covering the smallest non-modular lattice variety”. Pacific Journal of Mathematics 82(2): 463–478. https://doi.org/10.2140/pjm.1979.82.463
Lampe William A. 1986. “A property of the lattice of equational theories”. Algebra Universalis 23: 61–69. https://doi.org/10.1007/BF01190912
Lee Kee-Beng. 1970. “Equational classes of distributive pseudo-complemented lattices”. Canadian Journal of Mathematics 22(4): 881–891. https://doi.org/10.4153/CJM-1970
101-4.
McKenzie Ralph N. 1972. “Equational bases and non-modular lattice varieties”. Transactions of the American Mathematical Society 174: 1–43. https://doi.org/10.2307/1996095
McNulty George F. 1981. “Structural diversity in the lattice of equational theories”. Algebra Universalis 13: 271–292. https://doi.org/10.1007/BF02483841
Mel’nik I. I. 1971. “Normal closures of perfect varieties of universal algebras”. Ordered sets
of lattices 14: 56–65. [In Russian].
Mel’nik I. I. 1973a. “Nilpotent shifts of varieties”. Mathematical Notes 14(5): 962–966. Eng. translation of Mel’nik (1973b). https://doi.org/10.1007/BF01462258
Mel’nik I. I. 1973b. “Nilpotent shifts of varieties”. Matematicheskie Zametki 14(5): 703–712.
[In Russian].
Mruczek Krystyna. 2000. “On some lattice of varieties related to changes of the type”. In: General Algebra and Applications. Proceedings of the 59th Workshop on General Algebra, ed. Klaus Denecke, Hans-Júrgen Vogel. Aachen: Shaker Verlag. pp. 147–153.
Nelson Evelyn. 1971a. “The lattices of equational classes of commutative semigroups”. Canadian Journal of Mathematics 23(5): 875–895. https://doi.org/10.4153/CJM-1971-098-0
Nelson Evelyn. 1971b. “The lattices of equational classes of semigroups with zero”. Canadian Mathematical Bulletin 14(4): 531–535.
Ogonowski Jerzy. 2020. “Zmarł Jerzy Płonka [Jerzy Płonka has died]” https://pzn.org.pl/zmarl-jerzy-plonka/. Accessed: 2025-07-09. [In Polish].
Płonka Jerzy. 1967. “On a method of construction of abstract algebras”. Fundamenta Mathematicae 61(2): 183–187.
Płonka Jerzy. 1969. “On equational classes of abstract algebras defined by regular equa
tions”. Fundamenta Mathematicae 64: 241–147.
Płonka Jerzy. 1974. “On the subdirect product of some equational classes of algebras”. Mathematische Nachrichten 63: 303–305.
Płonka Jerzy. 1988. “On varieties of algebras defined by identities of some special forms”. Houston Journal of Mathematics 14: 253–263.
Płonka Jerzy. 1990a. “Biregular and uniform identities of algebras”. Czechoslovak Mathematical Journal 40(3): 367–387.
Płonka Jerzy. 1990b. “-compatible identities and their applications to classical algebras”. Mathematica Slovaca 40(1): 21–30.
Płonka Jerzy. 2001. “The Lattice of Subvarieties of the Biregularization of the Variety of Boolean Algebras”. Discussiones Mathematicae General Algebra and Applications 21: 255–268.
Szczepa´nski Henryk. 1999. “Z modlitw ˛a, muzyk ˛a i algebr ˛a [With prayer, music, and algebra]”. Go´s´c Niedzielny 76(49): 19. [In Polish].
Downloads
Veröffentlicht
Zitationsvorschlag
Ausgabe
Rubrik
Lizenz

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Keine Bearbeitungen 4.0 International.
Stats
Number of views and downloads: 5
Number of citations: 0