Utjecaj kognitivne složenosti zadatka na samoispravljanja

Mirjana Matea Kovač

DOI: http://dx.doi.org/10.12775/LinCop.2011.016

Abstrakt


This paper investigates the influence of the cognitive complexity of a certain task  type on the distribution of different categories of error self-repairs and appropriacy  repairs. A recorded speech sample, in the Croatian language, lasting for approximately  eight hours has been transcribed on a speech sample of 101 students at the  Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture  in Split. The classification of self-repairs is based on Levelt’s model of speech production,  as the empirically best supported theory of monolingual speech processing.  The students have been individually tested by performing five speech tasks and their  speech has been recorded. The tasks included: a) narration of the chronological order  of events on the example of a cartoon, b) room description, c) repeated room description  with different furniture arrangement, d) semantically unrelated utterance  formulation based on pictures, and e) story telling based on a sequence of pictures.  The retelling of the chronological order of events resulted in a higher frequency of  syntactic and morphological error repairs compared to other tasks, whereas the frequency  of lexical and phonological error repairs was not influenced by the task type.  Furthermore, different information repairs occurred more frequently in the cartoon  retelling task, compared to the description of rooms and the formulation of semantically  unrelated utterances. 

 


Słowa kluczowe


govorne pogreške; monitoring; samoispravljanje pogrešaka; kognitivna kompleksnost zadatka

Pełny tekst:

PDF (Hrvatski)

Bibliografia


AL-SUBAIHI A. A., 2000, A Monte Carlo Study of the Friedman and Conover Tests in the Single-Factor Repeated Measures Design, J. Statist. Comput. Simul. 65, s. 203–223.

BAARS B. J., MOTLEY M. T., MACKAY D. G., 1975, Output editing for lexical status in artificially elicited slips of the tongue, Journal of Verbal Learning and Verbal Behaviour 14, s. 382–391.

BORTFELD H., LEON S. D., BLOOM J. E., SCHOBER M. F., BRENNAN S. E., 2001, Disfluency Rates in Conversation: Effects of Age, Relationship, Topic, Role, and Gender. Language and Speech 44(2), s. 123–147.

BREDART S., 1991, Word interruption in self-repairing, Journal of Psycholinguistic Research 20, s. 123–137.

COIN D., 2007, A goodness-of-fit test for normality based on polynomial regression, Computational Statistics and Dana Analysis 52, s. 2185–2198.

DANIEL W. W., 1990, Applied Nonparametric Statistics, PWS-Kent Publishing Company.

DELL G. S., SCHWARTZ M. F., MARTIN N., SAFFRAN E. M., GAGNON D. A., 1997, Lexical access in aphasic and non aphasic speakers, Psychological Review 104, s. 801–838.

DEMŠAR J., 2006, Statistical Comparisons of Classifiers over Multiple Data Sets, Journal of Machine Learning Research 7, s. 1–30.

ERDELJAC V., 2009, Mentalni leksikon: modeli i činjenice, Zagreb: Ibis grafika.

FATHMAN A. K., 1980, Repetition and correction as an indication of speech planning and execution processes among second language learners, w: H. W. Dechert i M. Raupach (red.), Towards a crosslinguistic assessment of speech production, Frankfurt: Peter D. Lang, s. 77–85.

FIELD A., 2005, Discovering Statistics using SPSS, London: SAGE Publications.

GARNSEY S. M., DELL S. G., 1984, Some neurolinguistic implications of prearticulatory editing in production, Brain and language 23, s. 64–73.

HENDERSON A. R., 2006, Testing experimental dana for univariate normality, Clinica Chimica Acta 366, s. 112–129.

HORGA D., 1997, Samoispravljanje u govornoj proizvodnji, Suvremena lingvistika 43–44, s. 91–104.

KESKIN S., 2006, Comparison of Several Univariate Normality Tests Regarding Type I Error Rate and Power of the Test in Simulation based Small Samples, Journal of Applied Science Research 2 (5), s. 296–300.

KORMOS J., 2000, The role of attention in monitoring second language speech production, Language Learning 50, s. 343–384.

KORMOS J., 2006, Speech Production and Second Language Acquisition, New York–London: Lawrence Erlbaum Associates.

KOVAČ M. M., VIDOVIĆ A., 2010, Samoispravljanja u hrvatskom jeziku, Časopis za fonetiku „Govor” XXVII (2), s. 91–114.

LENNON P., 1990, Investigating fluency in EFL: A quantitative approach, Language Learning 40, s. 387–417.

LEVELT W. J. M., 1982, Linearization in describing spatial networks, w: S. Peters, E. Saarinen (red.), Processes, beliefs and questions, Dordrecht: Reidel.

LEVELT W. J. M., 1983, Monitoring and self-repair in speech, Cognition 33, s. 41–103.

LEVELT W. J. M., 1989, Speaking: From intention to articulation, Cambridge MA: MIT Press.

MARQUES DE SÁ J. P., 2007, Applied Statistics Using SPSS, STATISTICA, MATLAB and R, Berlin–Heidelberg: Springer Verlag.

MONTGOMERY D. C., RUNGER G. C., 2003, Applied Statistics and Probability for Engineers, Hoboken, NJ: John Wiley and Sons.

PETT M. A., 1997, Nonparametric Statistics for Health Care Research, Thousand Oaks, CA: Sage.

POSTMA A., KOLK H., 1992, The effects of noise masking and required accuracy on speech errors disfluencies and self-repairs, Journal of Speech and Hearing Research 35, s. 37–544.

POULISSE N., 1993, A theoretical account of lexical communication strategies, w: R. Schreuder i B. Weltens (red.), The bilingual lexicon, Amsterdam: Benjamins, s. 157–189.

THODE H. C., 2002, Testing for normality, New York: Marcel Dekker.

VAN HEST G. W. C. M., 1996, Self-repair in L1 and L2 production, Tilburg: University Press.

VAN DE WIEL M. A., 2004, Exact null distributions of quadratic distribution-free statistics for two-way classification, Journal of Statistical Planning and Inference 120, s. 29–40.

VERHOEVEN L. T., 1989, Monitoring in children’s second language speech, Second Language Research 5, s. 141–155.

WIESE R., 1984, Psycholinguistische Aspekte der Sprachproduktion: Sprechverhalten und Verbalisierungsprozesse, Dűsseldorf: Universität Bielefeld.

ZHANG J., YUEHUA W., 2005, Likelihood-ratio tests for normality, Computational Statistics and Data Analysis 49, s. 709–721.


##plugins.generic.alm.title##

##plugins.generic.alm.loading##

Metrics powered by PLOS ALM






ISSN 2080-1068 (print)
ISSN 2391-7768 (online)

Partnerzy platformy czasopism