Relationships between geomagnetic Ар-indeх and parameters of the immunity in patients with multiple sclerosis and radiculopathies

Igor Popovych, Anatoliy Gozhenko, Nataliya Badiuk, Marek Napierała, Radosław Muszkieta, Walery Zukow, Roman Yanchij, Natalia Lapovets’, Lyubov Lapovets’, Viorica Akimova, Yaryna Nahurna, Olha Martianova, Roman Vivchar, Ivanna Chendey, Sofiya Ruzhylo

DOI: http://dx.doi.org/10.12775/JEHS.2021.11.03.009

Abstract


Background. The effect of geomagnetism on human immunity has so far been studied through long-term observations. We set ourselves the goal of detecting the immediate immunotropic effects of the Earth's magnetic field by analyzing the relationships between immunity parameters and the geomagnetic Ap-index. Material and methods. The object of observation were 74 patients with multiple sclerosis and 14 patients with radiculopathies, who in the period from September 2014 to November 2018 conducted a one-time assessment of immune status by the relative content in the blood of lymphocytes of CD3+, CD4+, CD8+, CD25+, CD56+ and CD19+ phenotypes and serum level of Immunoglobulines M, G, A as well as CIC and IL-1β. On the day of blood capture and during the previous 7 days, retrospectively recorded the geomagnetic Ap-index, using a publicly available information resource http://wdc.kugi.kyoto-u.ac.jp/kp/index.html. Results. During the week, the average level of Ap-index ranged from 12÷20 nT. The correlation coefficients between the Ap-index on the day of blood collection and 1, 3 and 7 days before it and the level of CD3+CD4+ lymphocytes were -0,57; -0,48; -0,55 і -0,52 respectively, while on other days were in the range of -0,35÷0,05. In contrast, with the level of CD56+ lymphocytes Ap-index correlates positively and almost mirror (0,56; 0,43; 0,54 і 0,57 respectively and 0,34÷-0,08), due to the reciprocity of their levels (r=-0,80). Also positive, but much weaker, correlates the Ap-index with the level of CD25+ lymphocytes (0,35; 0,25; 0,45 і 0,31 respectively and 0,22÷-0,14). In contrast, with the level of IL-1β Ap-index correlates significantly only on the day of blood collection and 2 days before (r=0,21 and 0,31 respectively), and with other registered parameters of immunity the correlation is insignificant. The canonical correlation between Ap-indices for 7 days before and on the day of blood collection, on the one hand, and the levels of CD4+, CD56+, CD25+ and CD8+ lymphocytes and the concentration of IgM and IL-1β - on the other hand, was very strong: R=0,741; R2=0,549; χ2(42)=130; p<10-6. Conclusion. Disturbances of the geomagnetic field (Ap-index) has a significant immediate modulating effect on the level of immune parameters in the blood, mostly T-helpers (suppressor) and natural killers (enhancing).


Keywords


geomagnetic Ap-index; immune status; multiple sclerosis; radiculopathy.

Full Text:

PDF

References


Abdollahi, F., Sajedi, S. (2014). Correlation of multiple sclerosis (MS) incidence trends with solar and geomagnetic indices: Time to revise the method of reporting MS epidemiological data. Iran J Neurol, 13(2), 64-69.

Babayev, E., Allahverdiyeva, A. (2007). Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: some of results of the Azerbijani studies. Advances in Space Research, 40, 1941–1951.

Baevsky, R., Petrov, V., Cornelissen, G., Halberg, F., Orth-Gomer, K., Akerstedt, T., Otsuka, K., Breus, T., Siegelova, J., Dusek, J., Fiser, B. (1997). Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno), 70(4–5), 201–206.

Bonhomme-Faivre, L., Marion, S., Forestier, F., Santini, R., Auclair, H. (2003). Effects of electromagnetic fields on the immune systems of occupationally exposed humans and mice. Arch Environ Health, 58(11), 712-717. doi: 10.3200/AEOH.58.11.712-717.

Breus, T., Ozheredov, V., Syutkina, E., Rogoza, A. (2008). Some aspects of the biological effects of space weather. J Atmos Sol-Terr Phy, 70(2–4), 436–441.

Breus, T., Pimenov, K., Cornélissen, G., Halberg, E., Syutkina, E., Baevsky, R., Petrov, V., Orth-Gómer, K., Akerstedt, T., Otsuka, K., Watanabe, Y., Chibisov, S. (2002). The biological effects of solar activity. Biomed Pharmacother, 56 (Suppl 2), 273–283.

Burch, J., Reif, J., Yost, M. (1999). Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett, 266, 209–12. doi: 10.1016/S0304-3940(99)00308-0.

Chizhevsky, A. (1976). The Terrestrial Echo of Solar Storms (in Russian). Moscow. Mysl; 366 p.

Chizhevsky, A. (1995). The Cosmic Pulse of Life. The Earth is Embraced by the Sun. Heliotaraxia (in Russian). Moscow. Mysl; 766 p.

Christiansen,,C., Christensen, S., Farkas, D., Mire,t M., Sorensen, H., Pedersen, L. (2010). Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 35(4), 267–274. doi: 10.1159/000320245.

Cocek, A., Hahn, A., Ambrus, M., Dohnalova, A., Jandova, A., Pokorny, J. (2008). Changes of leukocyte adherence ability under the influence of magnetic field in the course of a treatment of patients with laryngeal and pharyngeal carcinoma. Electromagn Biol Med, 27(3), 277–288. doi: 10.1080/15368370802277724.

Consolini, G., Kretzschmar, M., Lui, A. et al. (2005). On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J Geophys Res Space Phys, 110, A07202. doi: 10.1029/2004JA010947.

Conti, P., Gigante, G., Alesse, E., Cifone, M., Fieschi, C., Reale, M., Angeletti, P. (1985). A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett, 181, 28–32.

Cuzzocrea, S., Reiter, R.. (2001). Pharmacological action of melatonin in shock, inflammation and ischemia / reperfusion injury. Eur J Pharmacol, 426, 1–10. doi: 10.1016/S0014-2999(01) 01175-X.

Davis, T., Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. J Geophys Res, 71, 785–801. doi: 10.1029/JZ071i003p00785.

Dubrov, A. (2013). The Geomagnetic Field and Life: Geomagnetobiology. Springer.

Esquifino, A., Pandi-Perumal, S., Cardinali, D. (2004). Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev, 4, 423–33. doi: 10.1016/j.cair.2004.08.002.

Flipo, D., Fournier, M., Benquet, C., Roux, P., Le Boulaire, C., Pinsky, C., LaBella, F., Krzystyniak, K. (1998). Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A, 54, 63–76.

Frahm, J., Lantow, M., Lupke, M., Weiss, D., Simkó, M. (2006). Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J Cell Biochem, 99(1), 168-177. doi: 10.1002/jcb.20920.

Gozhenko, A., Biryukov, V., Gozhenko, O., Zukow, W. (2018a). Health as a space-time continuum. Journal of Education, Health and Sport, 8(11), 763-777. doi: http://dx.doi.org/10.5281/zenodo.2657000.

Gozhenko, A., Biryukov, V., Muszkieta, R., Zukow, W. (2018b). Physiological basis of human longevity: the concept of a cascade of human aging mechanism. Collegium antropologicum, 42(2), 139-146.

Ha, E., Choe, B., Jung, K. et al. (2005). Positive relationship between melatonin receptor type 1B polymorphism and rheumatoid factor in rheumatoid arthritis patients in the Korean population. J Pineal Res, 39, 201–205. doi: 10.1111/j.1600-079X. 2005.00237.x.

Halberg, F., Cornélissen, G., Otsuka, K., Watanabe, Y. et al. (2000). Cross-spectrally coherent ~10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinol Lett, 21(3), 233–258.

Hanslmeier, A. (2007). The Sun and Space Weather. 2. Dordrecht: Springer.

Jandova, A,, Mhamdi, L,, Nedbalova, M,, Cocek, A,, Trojan, S,, Dohnalova, A,, Pokorny, J. (2005). Effects of Magnetic Field 0.1 and 0.05 mT on Leukocyte Adherence Inhibition.Electromagn Biol Med, 24(3), 283–292. doi: 10.1080/15368370500379681.

Kirschvink, J., Kobayashi-Kirschvink, A., Woodford, B. (1992). Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA, 89(16), 7683–7687. doi: 10.1073 /pnas.89. 16. 7683.

Kirschvink, J., Kobayashi-Kirschvink, A., Diaz-Ricci, J., Kirschvink, S. (1992). Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics, (Suppl 1), 101–113.

Kissinger, J., McPherron, R., Hsu, T. et al. (2011). Steady magnetospheric convection and stream interfaces: relationship over a solar cycle. J Geophys Res Space Phys, 116, A00I19. doi: 10.1029/2010JA015763.

Kul’chyns’kyi, A., Gozhenko, A., Zukow, W., Popovych, I. (2017). Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 3. Correlations between parameters EEG, HRV and Immunogram. Journal of Education, Health and Sport, 7(3), 53-71.

Kul’chyns’kyi, A., Kovbasnyuk, M., Kyjenko, V., Zukow, W., Popovych, I. (2016). Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport, 6(10), 377-401.

Kul’chyns’kyi, A., Kyjenko, V., Zukow, W., Popovych, I. (2017). Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine, 12(1), 201-213.

Kul’chyns’kyi, A., Zukow, W., Korolyshyn, T., Popovych, I. (2017). Interrelations between changes in parameters of HRV, EEG and humoral immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport, 7(9), 439-459.

Lapovets’, L., Lutsyk, B. (2004). Laboratory Immunology (in Ukrainian). Kyiv, 173 p.

Lebel, R., Eissa, A., Seres, P., Blevins, G., Wilman, A. (2012). Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Mult Scler, 18(4), 433–441. doi: 10.1177 /1352458511428464.

LeVine, S., Chakrabarty, A. (2004). The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NYAS, 1012, 252–266. doi: 10.1196 /annals. 1306.021.

Lowell, W., Davis, G. Jr. (2008). The light of life: Evidence that the sun modulates human lifespan. Med Hypotheses, 70(3), 501–507.

Lupke, M., Frahm, J., Lantow, M. et al. (2006). Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta, 1763(4), 402-412. doi: 10.1016/j.bbamcr.2006.03.003.

Muehsam, D., Ventura, C. (2014). Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med, 3(2), 40-55. doi: 10.7453/gahmj.2014.008.

Mulligan, B., Hunter, M., Persinger, M. (2010). Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: replication of the Azerbaijani studies. Advances in Space Research, 45, 940–948.

Nance, D., Sanders, V. (2007). Autonomic innervation and regulation of immune system (1987-2007). Brain Behav Immun, 21(6), 736-745.

Novik, O., Smirnov, F. (2013). Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer. Biofizika, 58(3), 554–560.

Palmer S., Rycroft M., Cermack M. (2006). Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth's surface. Surv Geophys, 27, 557–95. doi: 10.1007/s10712-006-9010-7.

Pinchuk, V., Gluzman, D. (1990). Immunocytochemi and Monoclonal Antibodies in Onkohematology (in Russian). Kyiv. Naukova dumka, 230 p.

Popovych, I., Gozhenko, A., Zukow, W., Polovynko, I. (2020). Variety of Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. Scholars' Press. Riga, 172 p. doi http://dx.doi.org/10.5281/zenodo.3822074.

Popovych, I., Lukovych, Yu., Korolyshyn, T., Barylyak, L., Kovalska, L., Zukow, W. (2013). Relationship between the parameters heart rate variability and background EEG activity in healthy men. Journal of Health Sciences, 3(4), 217-240.

Popovych, I., Kozyavkina, O., Kozyavkina, N., Korolyshyn, T., Lukovych, Yu., Barylyak, L. (2014). Correlation between Indices of the Heart Rate Variability and Parameters of Ongoing EEG in Patients Suffering from Chronic Renal Pathology. Neurophysiology, 46(2), 139-148.

Popovych, I., Kul’chyns’kyi, A., Korolyshyn, T., Zukow, W. (2017). Interrelations between changes in parameters of HRV, EEG and cellular immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport, 7(10), 11-23.

Popovych, I., Kul’chyns’kyi, A., Gozhenko, A., Zukow, W., Kovbasnyuk, M., Korolyshyn, T. (2018). Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport, 8(2), 135-156.

Pulkkinen, T., Tanskanen, E., Viljanen, A. et al. (2011). Auroral electrojets during deep solar minimum at the end of solar cycle 23. J Geophys Res Space Phys, 116, A04207. doi: 10.1029/2010 JA016098.

Rajaram, M., Mitra, S. (1981). Correlation between convulsive seizure and geomagnetic activity. Neurosci Lett, 24(2), 187–191.

Remans, P., van Oosterhout, M., Smeets, T. et al. (2005). Intracellular free radical production in synovial T lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum, 52, 2003–2009. doi: 10.1002/art.21111.

Sajedi, S., Abdollahi, F. (2012). Geomagnetic disturbances may be environmental risk factor for multiple sclerosis: an ecological study of 111 locations in 24 countries. BMC Neurol, 12, 100. doi: 10.1186/1471-2377-12-100.

Sajedi, S., Abdollahi, F. (2017). Which Environmental Factor Is Correlated with Long-Term Multiple Sclerosis Incidence Trends: Ultraviolet B Radiation or Geomagnetic Disturbances? Mult Scler Int, 2017, 4960386. doi: 10.1155/2017/4960386.

Simko, M., Mattsson, M. (2004). Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem, 93(1), 83–92. doi: 10.1002/jcb.20198.

Stoupel, E. (2002). The effect of geomagnetic activity on cardiovascular parameters. Biomed Pharmacother, 56(Suppl 2), 247–256.

Stoupel, E., Petrauskiene, J., Abramson, E., Kalediene, R., Sulkes, J. (2002). Distribution of monthly deaths, solar (SA) and geomagnetic (GMA) activity: their interrelationship in the last decade of the second millennium: the Lithuanian study 1990–1999. Biomed Pharmacother, 56(Suppl 2), 301–308.

Thayer, J., Sternberg, E. (2010). Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav Immun, 24(8), 1223-1228.

Tracey, K. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest, 117(2), 289-296.

Vencloviene, J., Babarskiene, R., Slapikas, R., Sakalyte, G. (2013). The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int J Biometeorol, 57(5), 797–804.

Vencloviene, J., Babarskiene, R., Milvidaite, I., Kubilius, R., Stasionyte, J. (2014). The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int J Biometeorol, 58(6), 1295-1303. doi: 10.1007/s00484-013-0725-0.

Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J, 6(13), 3177–3185.

Wing, S. Rider, L., Johnson, J. et al. (2015). Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence? BMJ Open, 5(5), e006636. doi: 10.1136/bmjopen-2014-006636.

Zaporozhan, V., Ponomarenko, A. (2010). Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. Int J Environ Res Public Health, 7(3), 938-965. doi: 10.3390/ijerph7030938.

Zhadin, M. (2001). Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics, 22(1), 27-45. doi: 10.1002/1521-186x(200101)22:1<27:aid-bem4> 3.0.co;2-2.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM




Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

https://pbn.nauka.gov.pl/sedno-webapp/search?search&searchCategory=WORK&filter.inJournal=36616

POL-index 2011 - 2014

https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-32a319c5-a850-4f44-ba70-1418a6087655

BASE 2011 - 2014

https://www.base-search.net/Search/Results?lookfor=Journal+of+Health+Sciences+%28Radom%29&type=all&oaboost=1&ling=1&name=&thes=&refid=dcrespl&newsearch=1

http://elibrary.ru/contents.asp?titleid=37467

http://journal.rsw.edu.pl/index.php/JHS/issue/archive

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska, EuroPub database, NLM Catalog Result - NCBI, BASE, Russian Sciences Index, Arianta.

https://zdb-katalog.de/title.xhtml?idn=1080187162

https://europub.co.uk/journals/22625

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

https://www.ncbi.nlm.nih.gov/nlmcatalog/101679844

Find a library that holds this journal: http://worldcat.org/issn/23918306

 

PBN Poland

https://pbn.nauka.gov.pl/sedno-webapp/journals/49068

POL-index

https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-c39c8169-88d2-45db-9e7f-d948ce9981c4

BASE

https://www.base-search.net/Search/Results?join=AND&bool0[]=AND&lookfor0[]=2391-8306&type0[]=all&page=11&l=pl&oaboost=1&refid=dcpagepl

Redaction, Publisher and Editorial Office

Publisher and Editorial Office
Department of Physical Culture,
Faculty of Earth Sciences and Spatial Management,
Nicolaus Copernicus University in Toruń, Poland
Address: Str. Lwowska 1, 87-100 Toruń, Poland

  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at https://dbh.nsd.uib.no/publiseringskanaler/erihplus/periodical/info?id=485984

Indexed in Index Copernicus Journals Master List.

http://journals.indexcopernicus.com/Journal+of+Education+Health+and+Sport,p24782242,3.html

ICV 2019 = 100.00 ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

RG Journal Impact: 0.18 *

*This value is calculated using ResearchGate data and is based on average citation counts from work published in this journal. The data used in the calculation may not be exhaustive.

RG Journal impact history

2020Available summer 2021
2018 / 20190.18
20170.07
20160.03

RG Journal impact over time

RG Journal impact
0.180.160.140.120.100.080.060.040.02201620172018
  

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (https://pbn.nauka.gov.pl/journals/36616)

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ) http://elibrary.ru/contents.asp?titleid=37467

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski

(http://www1.bg.us.edu.pl/bazy/czasopisma/czasop_full.asp?id=3595)

Partnerzy platformy czasopism