Theories of the pathogenesis of schizophrenia

Justyna Dąbrowska, Magdalena Wójcik, Julita Szarpak, Damian Bator, Joanna Milanowska, Hubert Nieścior



Introduction: Schizophrenia is one of the most serious and frightening of all mental illnesses. It affects almost 1% of the population worldwide. The main concept and treatment of schizophrenia are based on the dopaminergic hypothesis. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid signaling.

The aim of the study: The purpose of this systemic review was to collect and analyse current and new information on the pathogenesis of schizophrenia.

Material and method: Standard criteria were used to review the literature data. The search of articles in the PubMed database was carried out using the following keywords: schizophrenia, dopamine hypothesis, serotoninergic hypothesis, hypothesis of schizophrenia .

Description of the state of knowledge: There are evidence that pathogenesis of schizophrenia include dysfunction in dopaminergic, serotoninergic, GABAergic, glutamatergic systems. The use of drugs that act on any of these systems reduces the symptoms of the disease. Nicotinic receptors may also be the target for drugs in treatment of schizophrenia. Studies about the role of nicotinic receptors in pathogenesis of schizophrenia show that it normalize many of the sensory processing deficits found in schizophrenia.

Summary: Despite the fact that current concept and treatment are still based on the dopaminergic hypothesis of the disease, existing theories and each new theory, open up different ways for treating schizophrenia. Considering that schizophrenia is one of the most serious and frightening of all mental illnesses and has major public health implications, more research about pathogenesis and ways of treatment is needed.


schizophrenia; dopamine hypothesis; serotoninergic hypothesis; hypothesis of schizophrenia

Full Text:



Emsley R, Chiliza B, Asmal L, Harvey BH. The nature of relapse in schizophrenia. BMC Psychiatry. 2013 13 50. Published 2013 Feb 8. doi:10.1186/1471-244X-13-50

Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules. 2018 23(8) 2087. Published 2018 Aug 20. doi:10.3390/molecules23082087

Schizophrenia Commission. The abandoned illness: a report from the Schizophrenia Commission. London: Rethink Mental Illness. 2012

Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 2000 250 274-85.

Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry 2001 58:1039-46.

Boydell J, van Os J, McKenzie K, Allardyce J, Goel R, McCreadie RG, et al. Incidence of schizophrenia in ethnic minorities in London: ecological study into interactions with environment. BMJ 2001 323 1336-8.

Picchioni MM, Murray RM. Schizophrenia. BMJ. 2007 335(7610) 91-95. doi:10.1136/bmj.39227.616447.BE

Batinic B. Cognitive Models of Positive and Negative Symptoms of Schizophrenia and Implications for Treatment. Psychiatr Danub. 2019 31(Suppl 2) 181-184.

Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, et al. The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches [published correction appears in Biol Psychiatry 2002 Feb 15 51(4) 346]. Biol Psychiatry. 2001 50(11) 884-897. doi:10.1016/s0006-3223(01)01303-8

Addington J, Heinssen R. Prediction and prevention of psychosis in youth at clinical high risk. Annu Rev Clin Psychol. 2012 8 269–289.

Yang AC, Tsai SJ. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci. 2017 18(8) 1689. Published 2017 Aug 3. doi:10.3390/ijms18081689

Kapur S, Remington G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biological Psychiatry. 2001;50:873–83.

Urs NM, Peterson SM, Caron MG. New Concepts in Dopamine D2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol. Psychiatry. 2017 81 78–85. doi: 10.1016/j.biopsych.2016.10.011.

Moran RJ, Jones MW, Blockeel AJ, Adams RA, Stephan KE, Friston KJ. Losing control under ketamine: Suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology. 2015 40 268–277. doi: 10.1038/npp.2014.184.

Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry. 2000 57 65–73. doi: 10.1001/archpsyc.57.1.65.

Grunder G, Cumming P. The dopamine hypothesis of schizophrenia: Current status. In: Abel T., Nickl-Jockschat T., editors. The Neurobiology of Schizophrenia. Academic Press; Cambridge, MA, USA: 2016. pp. 109–124

Lee T, Seeman P. Elevation of brain neuroleptic/dopamine receptors in schizophrenia. Am J Psychiatry. 1980;137:191–197.

Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, et al. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain. 2013 136(Pt 11) 3242-3251. doi:10.1093/brain/awt264

Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014 511(7510) 421-427. doi:10.1038/nature13595

Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012 37(1) 4-15. doi:10.1038/npp.2011.181

Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol. 2001 11(3) 327-335. doi:10.1016/s0959-4388(00)00215-4

Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007

(1) 39-47. doi:10.1016/j.coph.2006.08.01

Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence [published correction appears in Mol Psychiatry. 2005 Apr 10(4) 420] [published correction appears in Mol Psychiatry. 2005 10(8) 804]. Mol Psychiatry. 2005 10(1) 40-5. doi:10.1038/

Farber NB. The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci. 2003 1003 119-130. doi:10.1196/annals.1300.008

Kondziella D, Brenner E, Eyjolfsson EM, Sonnewald U. How do glial-neuronal interactions fit into current neurotransmitter hypotheses of schizophrenia?. Neurochem Int. 2007 50(2) 291-301. doi:10.1016/j.neuint.2006.09.006

Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia--a synthesis and selective review. J Psychopharmacol. 2007 21(4) 440-452. doi:10.1177/0269881106073126

Leveque JC, Macías W, Rajadhyaksha A, Carlson RR, Barczak A, et al. Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci. 2000 20(11) 4011-4020. doi:10.1523/JNEUROSCI.20-11-04011.2000

Poels EM, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, et al. Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res. 2014 152(2-3) 325-332. doi:10.1016/j.schres.2013.12.013

Tandon N, Bolo NR, Sanghavi K, Mathew IT, Francis AN, et al. Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophr Res. 2013 148(1-3) 59-66. doi:10.1016/j.schres.2013.05.024

Natsubori T, Inoue H, Abe O, Takano Y, Iwashiro N, et al. Reduced frontal glutamate + glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia. Schizophr Bull. 2014 40(5) 1128-1139. doi:10.1093/schbul/sbt124

Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015 29(2) 97-115. doi:10.1177/0269881114563634

Aghajanian G. Serotonin model of schizophrenia: Emerging role of glutamate mechanisms. Brain Res. Rev. 2000 31 302–312. doi: 10.1016/S0165-0173(99)00046-6.

Eggers AE. Extending David Horrobin’s membrane phospholipid theory of schizophrenia: Overactivity of cytosolic phospholipase A2 in the brain is caused by overdrive of coupled serotonergic 5HT2A/2C receptors in response to stress. Med. Hypotheses. 2012 79 740–743. doi: 10.1016/j.mehy.2012.08.016.

Eggers AE. A serotonin hypothesis of schizophrenia. Med. Hypotheses. 2013 80 791–794. doi: 10.1016/j.mehy.2013.03.013.

Abi-Dargham A. Alterations of serotonin transmission in schizophrenia. Int. Rev. Neurobiol. 2007 78 133–164. doi: 10.1016/S0074-7742(06)78005-9.

Mombereau C, Arnt J, Mørk A. Involvement of presynaptic 5-HT1A receptors in the low propensity of brexpiprazole to induce extrapyramidal side effects in rats. Pharmacol. Biochem. Behav. 2017 153:141–146.

doi: 10.1016/j.pbb.2016.12.015.

Benes FM. The GABA system in schizophrenia: Cells, molecules and microcircuitry. Schizophr. Res. 2015 167 1–3. doi: 10.1016/j.schres.2015.07.017.

Tso IF, Fang Y, Phan KL, Welsh RC, Taylor S. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study. Schizophr. Res. 2015 168 338–344. doi: 10.1016/j.schres.2015.08.022.

Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, et al. GABAergic dysfunction in schizophrenia: New treatment strategies on the horizon. Psychopharmacology (Berl.) 2005 180 191–205. doi: 10.1007/s00213-005-2212-8.

Garbutt JC, van Kammen DP. The interaction between GABA and dopamine: Implications for schizophrenia. Schizophr. Bull. 1983 9 336–353. doi: 10.1093/schbul/9.3.336.

Wassef A, Baker J, Kochan LD. GABA and schizophrenia: A review of basic science and clinical studies. J. Clin. Psychopharmacol. 2003 23 601–640. doi: 10.1097/

George TP, Krystal JH. Comorbidity of psychiatric and substance abuse disorders. Curr Opin Psychiatry. 2000 13(3) 327–331

Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry. 2007 12(3) 232-246. doi:10.1038/

Brunzell DH, McIntosh JM. Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology. 2012 37(5) 1134-1143. doi:10.1038/npp.2011.299

Wallace TL, Bertrand D. Neuronal α7 Nicotinic Receptors as a Target for the Treatment of Schizophrenia. Int Rev Neurobiol. 2015 124 79-111. doi:10.1016/bs.irn.2015.08.003

Tregellas JR, Wylie KP. Alpha7 Nicotinic Receptors as Therapeutic Targets in Schizophrenia. Nicotine Tob Res. 2019;21(3):349-356. doi:10.1093/ntr/nty034

Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl). 1998 138(3–4) 217–230.

Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH. Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry. 2004 55(8) 850–858.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

POL-index 2011 - 2014

BASE 2011 - 2014

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska, EuroPub database, NLM Catalog Result - NCBI, BASE, Russian Sciences Index, Arianta.

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

Find a library that holds this journal:


PBN Poland



Redaction, Publisher and Editorial Office

Publisher and Editorial Office
Department of Physical Culture,
Faculty of Earth Sciences and Spatial Management,
Nicolaus Copernicus University in Toruń, Poland
Address: Str. Lwowska 1, 87-100 Toruń, Poland

  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at

Indexed in Index Copernicus Journals Master List.,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

RG Journal Impact: 0.18 *

*This value is calculated using ResearchGate data and is based on average citation counts from work published in this journal. The data used in the calculation may not be exhaustive.

RG Journal impact history

2020Available summer 2021
2018 / 20190.18

RG Journal impact over time

RG Journal impact

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ)

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski


Partnerzy platformy czasopism