An impact of selected micronutrients on fertility
DOI:
https://doi.org/10.12775/JEHS.2020.10.09.023Keywords
fertility, micronutrients, selene, zinc,Abstract
Introduction and purpose: The problem with infertility affects between 8 and 12% of reproductive-aged couples. Among the reasons, smoking, adulterated food, hormonal disorder are featured. Our purpose is to check how micronutrients impact fertility.
Brief description of the state of knowledge: Micronutrients deficiency, specifically zinc and selenium deficiencies have also unpropitious impact on fertility. In this review, the potential role of these microelements in male and female reproductive health is considered. Zinc had been proved to regulate sperm motility, spermatogenesis and reduce oxidative stress. Lower delivery of selenium decrease testosterone level by causing changes in receptor of the luteinising hormone. It is also compared with lower spermatozoa concentration. In this review the role of iron, manganese, lead, nickel, copper, magnesium and cobalt is described as well.
Summary: Deficiencies of some micronutrients may make worse the fertility. That’s the reason why additional supplementation may be important in the treatment of infertility.
References
Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):e1001356.
Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009 Nov 1;24(11):2683-7.
World Health Organization 2013."Sexual and reproductive health: Infertility definitions and terminology". Available http://www.who.int/reproductivehealth/topics/infertility/definitions/en/
Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018 Dec;62:2-10.
Chowdhury SH, Cozma AI, Chowdhury JH. Infertility. Essentials for the Canadian Medical Licensing Exam: Review and Prep for MCCQE Part I. 2nd edition. Wolters Kluwer. Hong Kong. 2017.
Gabrielsen JS, Tanrikut C. Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology. 2016;4(4):648-61.
Leaver RB. Male infertility: an overview of causes and treatment options. Br J Nurs. 2016 Oct 13;25(18):S35-40.
Lindsay T.J., Vitrikas K.R. California. Am Fam Physician. 2015 Mar 1;91(5):308-314
R. S. Bedwal and A. Bahuguna, “Zinc, copper and selenium in reproduction,” Experientia, vol. 50, no. 7, pp. 626–40, 1994.
M. I. Camejo, L. Abdala, G. Vivas-Acevedo, R. Lozano-Hernández, M. Angeli-Greaves, and E. D. Greaves, “Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters,” Biological trace element research, vol. 143, no. 3, pp. 1247–54, 2011.
A. I. S. B. Villaverde et al., “Blood and seminal plasma concentrations of selenium, zinc and testosterone and their relationship to sperm quality and testicular biometry in domestic cats,” Animal reproduction science, vol. 150, no. 1–2, pp. 50–5, 2014.
K. Kerns, M. Zigo, and P. Sutovsky, “Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency,” International journal of molecular sciences, vol. 19, no. 12, p. 4097, 2018.
T. P. Croxford, N. H. McCormick, and S. L. Kelleher, “Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice,” The Journal of nutrition, vol. 141, no. 3, pp. 359–65, 2011.
M. B. Sørensen, M. Stoltenberg, K. Henriksén, E. Ernst, G. Danscher, and M. Parvinen, “Histochemical tracing of zinc ions in the rat testis,” Molecular human reproduction, vol. 4, no. 5, pp. 423–8, 1998.
Q. CHU et al., “A potential role for zinc transporter 7 in testosterone synthesis in mouse Leydig tumor cells,” International Journal of Molecular Medicine, vol. 37, no. 6, pp. 1619–1626, Apr. 2016.
X. Zhang, T. Guan, B. Yang, Z. Chi, Z.-Y. Wang, and H. F. Gu, “A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in Leydig cells of human and mouse testicles,” Metabolism: clinical and experimental, vol. 88, pp. 40–50, 2018.
X. You et al., “Expression pattern of Zinc finger protein 185 in mouse testis and its role in regulation of testosterone secretion,” Molecular medicine reports, vol. 16, no. 2, pp. 2101–2106, 2017.
M. Ishizuka et al., “Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice,” Development, growth & differentiation, vol. 58, no. 7, pp. 600–8, 2016.
J. Zhao et al., “Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis,” Scientific reports, vol. 6, p. 22386, 2016.
J. J. Wirth and R. S. Mijal, “Adverse effects of low level heavy metal exposure on male reproductive function,” Systems biology in reproductive medicine, vol. 56, no. 2, pp. 147–67, 2010.
A. M. Kabel, “Zinc/alogliptin combination attenuates testicular toxicity induced by doxorubicin in rats: Role of oxidative stress, apoptosis and TGF-β1/NF-κB signaling,” Biomedicine & Pharmacotherapy, vol. 97, pp. 439–449, Jan. 2018.
S. Loft, K. Vistisen, M. Ewertz, A. Tjønneland, K. Overvad, and H. E. Poulsen, “Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index,” Carcinogenesis, vol. 13, no. 12, pp. 2241–2247, 1992.
P. I. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, “Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes,” The Journal of nutrition, vol. 125, no. 4, pp. 823–9, 1995.
S. Türk, R. Mändar, R. Mahlapuu, A. Viitak, M. Punab, and T. Kullisaar, “Male infertility: Decreased levels of selenium, zinc and antioxidants,” Journal of Trace Elements in Medicine and Biology, vol. 28, no. 2, pp. 179–185, Apr. 2014.
A. Wdowiak, G. Bakalczuk, and S. Bakalczuk, “Evaluation of effect of selected trace elements on dynamics of sperm DNA fragmentation,” Postepy higieny i medycyny doswiadczalnej (Online), vol. 69, pp. 1405–10, 2015.
M. I. Camejo, L. Abdala, G. Vivas-Acevedo, R. Lozano-Hernández, M. Angeli-Greaves, and E. D. Greaves, “Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters,” Biological trace element research, vol. 143, no. 3, pp. 1247–54, 2011.
A. R. S. Alsalman, L. A. Almashhedy, and M. H. Hadwan, “Effect of Oral Zinc Supplementation on the Thiol Oxido-Reductive Index and Thiol-Related Enzymes in Seminal Plasma and Spermatozoa of Iraqi Asthenospermic Patients,” Biological Trace Element Research, vol. 184, no. 2, pp. 340–349, Dec. 2017.
T. Ajina, A. Sallem, Z. Haouas, and M. Mehdi, “Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men,” Andrologia, vol. 49, no. 7, p. e12703, Sep. 2016.
Y.-L. Liu et al., “The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism,” Asian journal of andrology, vol. 19, no. 3, pp. 280–285, 2017.
M. Raigani et al., “The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men,” Andrologia, vol. 46, no. 9, pp. 956–62, 2014.
A. Taravati and F. Tohidi, “Association between seminal plasma zinc level and asthenozoospermia: a meta-analysis study,” Andrologia, vol. 48, no. 6, pp. 646–653, Nov. 2015.
J. Sun et al., “Heavy Metal Level in Human Semen with Different Fertility: a Meta-Analysis,” Biological Trace Element Research, vol. 176, no. 1, pp. 27–36, Jul. 2016.
K. Buhling, A. Schumacher, C. Z. Eulenburg, and E. Laakmann, “Influence of oral vitamin and mineral supplementation on male infertility: a meta-analysis and systematic review,” Reproductive biomedicine online, vol. 39, no. 2, pp. 269–279, 2019.
M. K. Hedaoo, K. P. Khllare, M. D. Meshram, S. K. Sahatpure, and M. G. Patil, ‘Study of some serum trace minerals in cyclic and non-cyclic surti buffaloes’, Vet. World, p. 2, 2008.
L. Flohe, W. A. Günzler, and H. H. Schock, ‘Glutathione peroxidase: A selenoenzyme’, FEBS Lett., vol. 32, no. 1, pp. 132–134, May 1973.
A. Noblanc et al., ‘Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability’, J. Androl., vol. 32, no. 6, pp. 641–650, Dec. 2011.
E. Chabory et al., ‘Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice’, J. Clin. Invest., vol. 119, no. 7, pp. 2074–2085, Jul. 2009.
M. Maiorino, M. Scapin, F. Ursini, M. Biasolo, V. Bosello, and L. Flohé, ‘Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants’, J. Biol. Chem., vol. 278, no. 36, pp. 34286–34290, Sep. 2003.
H. Imai et al., ‘Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice’, J. Biol. Chem., vol. 284, no. 47, pp. 32522–32532, Nov. 2009.
L. Flohé, ‘Selenium in mammalian spermiogenesis’, Biol. Chem., vol. 388, no. 10, Jan. 2007.
A. Agarwal and S. S. R. Allamaneni, ‘Free radicals and male reproduction’, J. Indian Med. Assoc., vol. 109, no. 3, pp. 184–187, Mar. 2011.
D. Behne, H. Weiler, and A. Kyriakopoulos, ‘Effects of selenium deficiency on testicular morphology and function in rats’, J. Reprod. Fertil., vol. 106, no. 2, pp. 291–297, Mar. 1996.
R. Kaur and K. Kaur, ‘Effects of dietary selenium (SE) on morphology of testis and cauda epididymis in rats’, Indian J. Physiol. Pharmacol., vol. 44, no. 3, pp. 265–272, Jul. 2000.
G. E. Olson, V. P. Winfrey, S. K. Nagdas, K. E. Hill, and R. F. Burk, ‘Selenoprotein P is required for mouse sperm development’, Biol. Reprod., vol. 73, no. 1, pp. 201–211, Jul. 2005.
G. E. Olson, V. P. Winfrey, S. K. Nagdas, K. E. Hill, and R. F. Burk, ‘Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis’, J. Biol. Chem., vol. 282, no. 16, pp. 12290–12297, Apr. 2007.
M. Conrad et al., ‘The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability’, Mol. Cell. Biol., vol. 25, no. 17, pp. 7637–7644, Sep. 2005.
H. Imai et al., ‘Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene’, Biochem. Biophys. Res. Commun., vol. 305, no. 2, pp. 278–286, May 2003.
D. Behne, T. Höfer, R. von Berswordt-Wallrabe, and W. Elger, ‘Selenium in the testis of the rat: studies on its regulation and its importance for the organism’, J. Nutr., vol. 112, no. 9, pp. 1682–1687, Sep. 1982.
D. Behne, M. Duk, and W. Elger, ‘Selenium content and glutathione peroxidase activity in the testis of the maturing rat’, J. Nutr., vol. 116, no. 8, pp. 1442–1447, Aug. 1986.
R. S. Bedwal and A. Bahuguna, ‘Zinc, copper and selenium in reproduction’, Experientia, vol. 50, no. 7, pp. 626–640, Jul. 1994.
M. I. Camejo, L. Abdala, G. Vivas-Acevedo, R. Lozano-Hernández, M. Angeli-Greaves, and E. D. Greaves, ‘Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters’, Biol. Trace Elem. Res., vol. 143, no. 3, pp. 1247–1254, Dec. 2011.
A. Ardestani Zadeh, D. Arab, N. S. Kia, S. Heshmati, and S. N. Amirkhalili, ‘The role of Vitamin E - Selenium - Folic Acid Supplementation in Improving Sperm Parameters After Varicocelectomy: A Randomized Clinical Trial’, Urol. J., vol. 16, no. 5, pp. 495–500, Oct. 2019.
B. Pajovic, A. Dimitrovski, N. Radojevic, and M. Vukovic, ‘A correlation between selenium and carnitine levels with hypo-osmotic swelling test for sperm membrane in low-grade varicocele patients’, Eur. Rev. Med. Pharmacol. Sci., vol. 20, no. 4, pp. 598–604, 2016.
M. Eroglu et al., ‘Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme q10 levels in relation to semen parameters in men with idiopathic infertility’, Biol. Trace Elem. Res., vol. 159, no. 1–3, pp. 46–51, Jun. 2014.
A. Chinyere Nsonwu-Anyanwu et al., ‘Heavy metals, biomarkers of oxidative stress and changes in sperm function: A case-control study’, Int. J. Reprod. Biomed. Yazd Iran, vol. 17, no. 3, Mar. 2019.
U. Marzec-Wróblewska et al., ‘The employment of IVF techniques for establishment of sodium, copper and selenium impact upon human sperm quality’, Reprod. Fertil. Dev., Mar. 2015.
A. A. Ghafarizadeh, G. Vaezi, M. A. Shariatzadeh, and A. A. Malekirad, ‘Effect of in vitro selenium supplementation on sperm quality in asthenoteratozoospermic men’, Andrologia, vol. 50, no. 2, Mar. 2018.
K. Buhling, A. Schumacher, C. zu Eulenburg, and E. Laakmann, ‘Influence of oral vitamin and mineral supplementation on male infertility: a meta-analysis and systematic review’, Reprod. Biomed. Online, vol. 39, no. 2, pp. 269–279, Aug. 2019.
Lourdes de Pereira M, Garcia e Costa F. Spermatogenesis recovery in the mouse after iron injury. Hum Exp Toxicol 22 (2003), pp. 275-279
Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H & Akyolcu MC. Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res 112 (2006), pp. 193-203.
Soliman A, Yassin M, De Sanctis V. Intravenous iron replacement therapy in eugonadal males with iron-deficiency anemia: effects on pituitary gonadal axis and sperm parameters; A pilot study. Indian J Endocrinol Metab 18 (2014), pp. 310-316
Leichtmann-Bardoogo Y, Cohen LA, Weiss A, Marohn B, Schubert S, Meinhardt A & Meyron-Holtz EG. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am J Physiol Endocrinol Metab 302 (2012), E1519-E1530.
Griffin KP, Ward DT, Liu W, Stewart G, Morris ID, Smith CP. Differential expression of divalent metal transporter DMT1 (Slc11a2) in the spermatogenic epithelium of the developing and adult rat testis. Am J Physiol Cell Physiol 288 (2005), C176-C184
Chen M, Peng S, Lu M et al. Effect of iron overload on impaired fertility in male patients with transfusion-dependent beta-thalassemia. Pediatr Res 83 (2018), pp. 655-661
De Sanctis V, Soliman AT, Elsedfy H, Di Maio S, Canatan D, Soliman N, Karimi M, Kattamis C. Gonadal dysfunction in adult male patients with thalassemia major: an update for clinicians caring for thalassemia, Expert Review of Hematology, 10:12 (2017), pp. 1095-1106
Wirth JJ, Rossano MG, Daly DC, Paneth N, Puscheck E, Potter RC, Diamond MP. Ambient manganese exposure is negatively associated with human sperm motility and concentration. Epidemiology 18 (2007), pp. 270-273
Benoff S, Centola GM, Millan C, Napolitano B, Marmar JL, Hurley IR. Increased seminal plasma lead levels adversely affect the fertility potential of sperm in IVF. Hum Reprod 18 (2003), pp. 374-383
Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP. Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol 17 (2003), pp. 447-450
Pant N, Kumar G, Upadhyay AD, Gupta YK, Chaturvedi PK. Correlation between lead and cadmium concentration and semen quality. Andrologia 44 (2014), pp. 370-375.
Li P, Zhong Y, Jiang X, Wang C, Zuo Z, Sha A. Seminal plasma metals concentration with respect to semen quality. Biol Trace Elem Res 148 (2012), pp. 1-6
Telisman S, Colak B, Pizent A, Jurasovic J, Cvitkovic P. Reproductive toxicity of low-level lead exposure in men. Environ Res 105 (2007) ,pp. 256-266.
Marzec-Wróblewska U, Kamiński P, Łakota P et al. Human Sperm Characteristics with Regard to Cobalt, Chromium, and Lead in Semen and Activity of Catalase in Seminal Plasma. Biol Trace Elem Res 188 (2019), pp. 251-260
Xu DX, Shen HM, Zhu QX, Chua L, Wang QN, Chia SE, Ong CN. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res (2003) 534(1-2), pp. 155-163
Yokoi K, Uthus EO, Nielsen FH. Nickel deficiency diminishes sperm quantity and movement in rats. Biol Trace Elem Res 93, (2003), pp. 141-154
Eidi M, Eidi A, Pouyan O, Shahmohammadi P, Fazaeli R, Bahar M. Seminal plasma levels of copper and its relationship with seminal parameters. Iran J Reprod Med. 2010; 8(2): 60-5. 17.
Yan L, Qiaoyan G, Mingcai L, Mengyang L, Xueming G. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China. Iran J Public Health. 2014; 43(1): pp. 35-41.
Hashemi MM, Behnampour N, Nejabat M, Tabandeh A, Ghazi-Moghaddam B, Joshaghani HR. Impact of Seminal Plasma Trace Elements on Human Sperm Motility Parameters. Rom J Intern Med. 2018 Mar 1;56(1):15-20
El Aaleba, Abdo Hm, Elshahed Ar, Bayoumi Im, Hamdy Mhm. Measuement of seminal and serum plasma magnesium levels in premature ejaculation. The Gulf Journal of Dermatology and Venereology (GJDV). 2012; 20(2): 35-9
Kumar GP, Laloraya M, Laloraya MM Powerful anti-sperm motility action of cobaltous ion and its recovery by a sulfhydryl compound. Contraception (1999) 41(6), pp. 633-639
Nikolaou VS, Petit A, Zukor DJ, Papanastasiou C, Huk OL, Antoniou J Presence of cobalt and chromium ions in the seminal fluid of young patients with metal-on-metal total hip arthroplasty. J Arthroplast 28(1) (2013), pp. 161-167
Guzikowski W, Szynkowska MI, Motak-Pochrzęst H, Pawlaczyk A, Sypniewski S Trace elements in seminal plasma of men from infertile couples. Arch. Med Sci 19 11(3) (2015), pp. 591-598
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 1427
Number of citations: 0