Sclerostin - a potential new marker of exercise influence on vascular calcification and mineral and bone disorder in hemodialysed adults
DOI:
https://doi.org/10.12775/JEHS.2019.09.12.007Keywords
sclerostin, Chronic Kidney Disease Mineral and Bone Disorder, exerciseAbstract
Chronic Kidney Disease (CKD) is defined as abnormalities of kidney structure or function, present for >3 months, with implications for health. Amongst CKD complications the most fatal is cardiovascular disease, which together with Chronic Kidney Disease Mineral and Bone Disorder (CKD-MBD) share a possible origin in Wnt signaling pathway disturbances. Sclerostin, a potent Wnt signaling inhibitor may possibly be used as a potential new marker of exercise influence on vascular calcification and mineral and bone disorder in hemodialysed adults.References
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements, 2013; 3: 1–150.
Coresh J, Selvin E, Stevens LA, et al. Prevalence of Chronic Kidney Disease in the United States. JAMA. 2007;298(17):2038–2047. doi:https://doi.org/10.1001/jama.298.17.2038
Culleton BF, Larson MG, Wilson PW, Evans JC, Parfrey PS, Levy D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 1999;56:2214-2219
A Meguid El Nahas, Aminu K Bello, Chronic kidney disease: the global challenge, The Lancet, Volume 365, Issue 9456, 2005, Pages 331-340, ISSN 0140-6736.
Klag MJ, Whelton PK, Randall BL, et al. End-stage renal disease in African-Americans and white men: 16-year MRFIT findings. JAMA 1997; 277: 1293–98
Sharon M. Moe, Tilman Drüeke, Norbert Lameire, Garabed Eknoyan, Chronic Kidney Disease–Mineral-Bone Disorder: A New Paradigm, Advances in Chronic Kidney Disease, Volume 14, Issue 1, 2007, Pages 3-12, ISSN 1548-5595.
Mehrotra R, Chiu Y, Kalantar-Zadeh K, Bargman J, Vonesh E. Similar Outcomes With Hemodialysis and Peritoneal Dialysis in Patients With End-Stage Renal Disease. Arch Intern Med. 2011;171(2):110–118.
Alfred-Demas, R.; Moore, B.; Trim, A.; Sandy-Robinson, A.; Wasunna, A.Cardiovascular Parameters in Chronic Haemodialysis Patients in Tobago. West Indian Medical Journal . 2018, Vol. 67 Issue 2, p157-159. 3p.
Longenecker JC, Coresh J, Powe NR et al. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study. J Am Soc Nephrol 2002; 13: 1918–1927.
Glenn M. Chertow, Paolo Raggi, Scott Chasan-Taber, Juergen Bommer, Herwig Holzer, Steven K. Burke, Determinants of progressive vascular calcification in haemodialysis patients, Nephrology Dialysis Transplantation, Volume 19, Issue 6, June 2004, Pages 1489–1496.
Levey AS, Coresh J, Balk E, et al. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Ann Intern Med. 2003;139:137–147.
Early Control of PTH and FGF23 in Normophosphatemic CKD Patients: A New Target in CKD-MBD Therapy? Rodrigo B. Oliveira, Ana L.E. Cancela, Fabiana G. Graciolli, Luciene M. Dos Reis, Sérgio A. Draibe, Lilian Cuppari, Aluizio B. Carvalho, Vanda Jorgetti, Maria E. Canziani, Rosa M.A. Moysés CJASN Feb 2010, 5 (2) 286-291; DOI: 10.2215/CJN.05420709.
Mario Cozzolino, Pablo Ureña-Torres, Marc G. Vervloet, Vincent Brandenburg, Jordi Bover, David Goldsmith, Tobias E. Larsson, Ziad A. Massy, Sandro Mazzaferro, on behalf of the CKD-MBD Working Group of ERA-EDTA, Is chronic kidney disease-mineral bone disorder (CKD-MBD) really a syndrome?, Nephrology Dialysis Transplantation, Volume 29, Issue 10, October 2014, Pages 1815–1820.
Thambiah, S., Roplekar, R., Manghat, P., Fogelman, I., Fraser, W. D., Goldsmith, D., & Hampson, G. (2012). Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcified tissue international, 90(6), 473-480.
Takuo Kubota, Toshimi Michigami, Keiichi Ozono. Wnt signaling in bone metabolism. J Bone Miner Metab (2009) 27:265–271.
Thambiah, S., Roplekar, R., Manghat, P., Fogelman, I., Fraser, W. D., Goldsmith, D., & Hampson, G. (2012). Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcified tissue international, 90(6), 473-480.
Janik, M., Stuss, M., Michalska-Kasiczak, M., Jegier, A., & Sewerynek, E. (2018). Effects of physical activity on sclerostin concentrations. Endokrynologia Polska, 69(2), 142-149.
Chung Y.C., Yeh M.L., Liu Y.M.: Effects of intradialytic exercise on the physical function, depression and quality of life for haemodialysis patients: a systematic review and meta-analysis of randomised controlled trials. J Clin Nurs 2017; 26 (13-14): 1801-1813. Dostępny w: doi: 10.1111/jocn.13514.
Kong C.H., Tattersall J.E., Greenwood R.N., Farrington K.: The effect of exercise during haemodialysis on solute removal. Nephrol Dial Transplant 1999; 14 (12): 2927–2931.
Emilia Mierzwińska, Tomasz Hryszko, Emilia Szablak-Uliszewska, Beata Naumnik. Sklerostyna i przewlekła choroba nerek. Postepy Hig Med Dosw 2017; 71 : 1098-1106.
Chantrel, F., Deloumeaux, J., Lange, C., & Lassalle, M. (2013). Survival and mortality in ESRD patients. Nephrologie & therapeutique, 9, S127-37.
Boyde, A. (2003). The real response of bone to exercise. Journal of anatomy, 203(2), 173-189.
Association of SOST gene polymorphisms with peak bone mineral density in Chinese nuclear families with male-offspring. Qi L, et al. Acta Biochim Biophys Sin (Shanghai), 2019 Mar 1. PMID 30883645.
Guerriere, K. I., Hughes, J. M., Gaffney‐Stomberg, E., Staab, J. S., & Matheny Jr, R. W. (2018). Circulating sclerostin is not suppressed following a single bout of exercise in young men. Physiological reports, 6(10), e13695.
Clarke B.L., Drake M.T.: Clinical utility of serum sclerostin measurements. Bonekey Rep 2013; 2: 361.
Kouvelioti R, Kurgan N, Falk B, Ward WE, Josse AR, Klentrou P. Response of Sclerostin and Bone Turnover Markers to High Intensity Interval Exercise in Young Women: Does Impact Matter?. Biomed Res Int. 2018;2018:4864952. Published 2018 Nov 1. doi:10.1155/2018/4864952.
Lombardi G., Lanteri P., Colombini A., Mariotti M., Banfi G.: Sclerostin concentrations in athletes: role of load and gender. J Biol Regul Homeost Agents 2012; 26 (1): 157–163.
Guerriere, K. I., Hughes, J. M., Gaffney-Stomberg, E., Staab, J. S., & Matheny, R. W. (2018). Circulating sclerostin is not suppressed following a single bout of exercise in young men. Physiological Reports, 6(10), e13695.
Gombos GC, Bajsz V, Pék E, et al. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disord. 2016;17:254. Published 2016 Jun 8. doi:10.1186/s12891-016-1109-5.
Falk B, Haddad F, Klentrou P, et al. Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos Int. 2016;27(3):1245–1249. doi:10.1007/s00198-015-3310-z.
Sharma-Ghimire, P., Chen, Z., Sherk, V., Bemben, M., & Bemben, D. (2019). Sclerostin and parathyroid hormone responses to acute whole-body vibration and resistance exercise in young women. Journal of bone and mineral metabolism, 37(2), 358-367.
Ardawi, M. S. M., Rouzi, A. A., & Qari, M. H. (2012). Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. The Journal of Clinical Endocrinology & Metabolism, 97(10), 3691-3699.
Hinton PS, Nigh P, Thyfault J. Serum sclerostin decreases following 12 months of resistance- or jump-training in men with low bone mass. Bone. 2017;96:85–90. doi:10.1016/j.bone.2016.10.011.
I. Bergstrom, P. Parini, S.A. Gustafsson, G. Andersson, J. Brinck, Physical training increases osteoprotegerin in postmenopausal women. J. Bone Miner. Metab. 30(2), 202–207 (2012)
Kerschan-Schindl K, Thalmann MM, Weiss E, et al. Changes in Serum Levels of Myokines and Wnt-Antagonists after an Ultramarathon Race. PLoS One. 2015;10(7):e0132478. Published 2015 Jul 6. doi:10.1371/journal.pone.0132478
Liao, H. W., Huang, T. H., Chang, Y. H., Liou, H. H., Chou, Y. H., Sue, Y. M., ... & Tsai, K. J. (2019). Exercise Alleviates Osteoporosis in Rats with Mild Chronic Kidney Disease by Decreasing Sclerostin Production. International journal of molecular sciences, 20(8), 2044.
Cejka D., Marculescu R., Kozakowski N., Plischke M., Reiter T.,Gessl A., Haas M.: Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab., 2014; 99: 248-255.
Desjardins L., Liabeuf S., Oliveira R.B., Louvet L., Kamel S., Lemke H.D., Vanholder R., Choukroun G., Massy Z.A., European Uremic Toxin (EUTox) Work Group: Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther., 2014; 10: 463-470.
Morena M, Jaussent I, Dupuy AM, et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant 2015; 30: 1345–1356.
Lv W., Guan L., Zhang Y., Yu S., Cao B., Ji Y.: Sclerostin as new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int. Urol. Nephrol., 2016; 48: 2043-2050.
Qureshi A.R., Olauson H., Witasp A., Haarhaus M., Brandenburg, V., Wernerson A., Lindholm B., Söderberg M., Wennberg L., Nordfors L., Ripsweden J., Barany P., Stenvinkel P.: Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int., 2015; 88: 1356-1364.
Li, M., Zhou, H., Yang, M., & Xing, C. (2019). Relationship between serum sclerostin, vascular sclerostin expression and vascular calcification assessed by different methods in ESRD patients eligible for renal transplantation: a cross-sectional study. International urology and nephrology, 51(2), 311-323.
Byon CH, Chen Y. Molecular mechanisms of vascular calcification in chronic kidney disease: the link between bone and the vasculature. Curr Osteoporos Rep. 2015;13:206–215.
Evenepoel P, Goffin E, Meijers B, Kanaan N, Bammens B, Coche E, Claes K, Jadoul M (2015) Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J Clin Endocrinol Metab 100(12):4669–4676.
Nguyen-Yamamoto L, Tanaka KI, St-Arnaud R, Goltzman D. Vitamin D-regulated osteocytic sclerostin and BMP2 modulate uremic extraskeletal calcification. JCI Insight. 2019;4(13):e126467. Published 2019 Jul 11. doi:10.1172/jci.insight.126467.
Mödder UI, Hoey KA, Amin S, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men, J Bone Miner Res , 2011, vol. 26 (pg. 373-379).
Daniel Cejka, Agnes Jäger-Lansky, Heidi Kieweg, Michael Weber, Christian Bieglmayer, Dominik G. Haider, Danielle Diarra, Janina M. Patsch, Franz Kainberger, Barbara Bohle, Martin Haas, Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients, Nephrology Dialysis Transplantation, Volume 27, Issue 1, January 2012, Pages 226–230.
Boltenstål, H., Qureshi, A. R., Behets, G. J., Lindholm, B., Stenvinkel, P., D’Haese, P. C., & Haarhaus, M. (2019). Association of Serum Sclerostin with Bone Sclerostin in Chronic Kidney Disease is Lost in Glucocorticoid Treated Patients. Calcified tissue international, 104(2), 214-223.
Cejka, D., Herberth, J., Branscum, A.J. et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011; 6: 877–882.
Ji, Y. Q., Guan, L. N., Yu, S. X., Yin, P. Y., Shen, X. Q., Sun, Z. W., ... & Ren, C. (2018). Serum sclerostin as a potential novel biomarker for heart valve calcification in patients with chronic kidney disease. European review for medical and pharmacological sciences, 22(24), 8822-8829.
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 454
Number of citations: 0