Anthropometric indicators associated with childhood obesity. Is it time for a BMI successor?
DOI:
https://doi.org/10.12775/JEHS.2021.11.08.014Keywords
children, Body Mass Index (BMI), Relative Fat Mass pediatric (RFMp), Tri-Ponderal Mass Index (TMI), Pediatric Body Adiposity Index (BAIp), Mid-Upper Arm Circumference (MUAC)Abstract
Childhood obesity and overweight have a wide impact on physical and mental health, and affect adulthood. In the last decade, scientists have been looking with concern at the increasingly frequent excess body weight in children and adolescents. Therefore, it is crucial to estimate the scale of the problem, and thus to correctly assess the level of adipose tissue. In assessing the nutritional status of the young, anthropometric measurements and indicators are used. Despite the widespread use of BMI (body mass index), this indicator is often criticized. BMI is frequently recognized as an imprecise tool and its use often results in misleading classification. Therefore, the aim of this study is to present selected, non-invasive anthropometric indicators related to overweight/obesity in children.
Anthropometric indicators are relatively simple tools used in public health. However, the search for a simple and useful indicator is still ongoing, which will enable the assessment of the nutritional status both in clinical practice and in population studies. The paper presents the most frequently described anthropometric indicators in the literature: body mass index (BMI) and BMIz score, relative fat mass pediatric (RFMp), tri-ponderal mass index (TMI), pediatric body adiposity fat index (BAIp) and the mid-upper arm circumference (MUCA). The possibilities of application and their effectiveness for the estimation of adipose tissue content and the risk of coexisting diseases are presented.
Although there is no consensus on the best tool, it is known that BMI will remain the main parameter in assessing nutritional status. Nevertheless, the authors suggest the usefulness of tools such as RFMp, TMI and MUAC as a good complement to the imperfections ascribed to BMI.
References
Staatz CB, Kelly Y, Lacey RE, Hardy R. Area-level and family-level socioeconomic position and body composition trajectories: longitudinal analysis of the UK Millennium Cohort Study. Lancet Public Health. 2021;6(8):e598-e607. doi: 10.1016/S2468-2667(21)00134-1
Finn EB, Beck A, Sharifi M. Equitable approaches to reducing the prevalence of pediatric obesity: school nutrition policies and beyond. Int J Obes (Lond). 2021;1-2. doi:10.1038/s41366-021-00924-0
World Health Organization (WHO). Obesity and overweight. 2021 https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337:869–73. doi:10.1056/NEJM199709253371301
Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23 Suppl 8:S1-107.
Nicklas TA, Baranowski T, Cullen KW, Berenson G. Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001;20:599–608. doi: 10.1080/07315724.2001.10719064
Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95-107. doi: 10.1111/obr.12334
Verbiest I, Michels N, Tanghe A, Braet C. Inflammation in Obese Children and Adolescents: Association with Psychosocial Stress Variables and Effects of a Lifestyle Intervention. Brain Behav Immun. 2021;29:S0889-1591(21)00284-1. doi: 10.1016/j.bbi.2021.07.020.
Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes (Lond). 2013;37(3):333–40.
Elisia I, Lam V, Cho B, Hay M, Li MY, Kapeluto J, Elliott T, Harris D, Bu L, Jia W, Leung H, Mohn W, Krystal G. Exploratory examination of inflammation state, immune response and blood cell composition in a human obese cohort to identify potential markers predicting cancer risk. PLoS One. 2020;15(2):e0228633. doi: 10.1371/journal.pone.0228633.
Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147-152. doi: 10.1016/j.metabol.2018.12.001
Magrone T, Jirillo E. Childhood obesity: immune response and nutritional approaches. Front. Immunol. 2015;6:76. doi: 10.3389/fimmu.2015.00076
Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411(1):166-183. doi:10.1111/nyas.13602
Weihe P, Spielmann J, Kielstein H, Henning-Klusmann J, Weihrauch-Blüher S. Childhood Obesity and Cancer Risk in Adulthood. Curr Obes Rep. 2020;9(3):204-212. doi: 10.1007/s13679-020-00387-w
Friesen CS, Hosey-Cojocari C, Chan SS, Csanaky IL, Wagner JB, Sweeney BR, Friesen A, Fraser JD and Shakhnovich V. Efficacy of Weight Reduction on Pediatric Nonalcoholic Fatty Liver Disease: Opportunities to Improve Treatment Outcomes Through Pharmacotherapy. Front. Endocrinol. 2021;12:663351. doi: 10.3389/fendo.2021.663351
Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol. 2016;11:421-49. doi: 10.1146/annurev-pathol-012615-044359
Ghosh T, Richardson M, Gordon PM, Ryder JR, Spector LG, Turcotte LM. Body mass index associated with childhood and adolescent high-risk B-cell acute lymphoblastic leukemia risk: A Children's Oncology Group report. Cancer Med. 2020;9(18):6825-6835. doi: 10.1002/cam4.3334
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378-397. doi: 10.3322/caac.21405
Lindberg L, Danielsson P, Persson M, Marcus C, Hagman E. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS Med. 2020;17(3):e1003078. doi:10.1371/journal.pmed.1003078
Guthold R, Stevens GA, Riley LM, Bull FC. Global Trends in Insufficient Physical Activity among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1.6 Million Participants. The Lancet Child & Adolescent Health. 2020;4:23-35. doi:10.1016/S2352-4642(19)30323-2
Aguilera CM, Olza J, Gil A. Genetic susceptibility to obesity and metabolic syndrome in childhood. Nutr Hosp. 2013;28:44–55. doi:10.3305/nh.2013.28.sup5.6917
Serra Majem L, Ribas Barba L, Aranceta Bartrina J, Pérez Rodrigo C, Saavedra Santana P, Peña Quintana L. Childhood and adolescent obesity in Spain. Results of the enKid study (1998-2000). Med Clin (Barc). 2003;121:725–32. doi:10.1016/S0025-7753(03)74077-9
Mahadevan S, Ali I. Is body mass index a good indicator of obesity? Int J Diabetes Dev Ctries. 2016;36:140–142. doi:10.1007/s13410-016-0506-5
Adab P, Pallan M, Whincup PH. Is BMI the best measure of obesity? BMJ. 2018; 360:k1274. doi:10.1136/bmj.k1274
Walczyk T. Anthropometric indicators of obesity. Are the new indicators a better predictor of body fat content than BMI? J Educ Health Sport. 2021;11(8):11-23. doi:10.12775/JEHS.2021.11.08.001
Must A, Anderson S. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006;30:590–594. doi:10.1038/sj.ijo.0803300
World Health Organization (WHO). Body mass index - BMI https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
Różdżyńska-Świątkowska A, Kułaga Z, Grajda A, Gurzkowska B, Góźdź M, Wojtyło M, Świąder A, Litwin M, Grupa Badaczy OLAF i OLA. Height, weight and body mass index references for growth and nutritional status assessment in children and adolescents 3-18 year of age. Stand Med, Pediatr. 2013; 1:11-21.
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240-1243. doi:10.1136/bmj.320.7244.1240
Cole T J, Flegal K M, Nicholls D, Jackson A A. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194. doi:10.1136/bmj.39238.399444.55
The Centers for Disease Control and Prevention (CDC). About Child & Teen BMI 2021 https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html
World Health Organization (WHO). BMI for ages. 2007 https://cdn.who.int/media/docs/default-source/child-growth/growth-reference-5-19-years/bmi-for-age-(5-19-years)/cht-bmifa-girls-perc-5-19years.pdf?sfvrsn=34a47a9b_4
Chin J, Wang H, Jia-Shuai M. The association between body mass index, waist circumference with body fat percent, and abdominal fat rate in overweight and obese pupils. Prev Med. 2013;47(07):603–7.
Widhalm K, Schönegger K. BMI: Does it really reflect body fat mass? J Pediatr. 1999;134(4):522. doi: 10.1016/s0022-3476(99)70220-9
Ajala O, Mold F, Boughton C, Cooke D, Whyte M. Childhood predictors of cardiovascular disease in adulthood. A systematic review and meta-analysis. Obes Rev. 2017;18(9):1061-1070. doi: 10.1111/obr.12561
NCD Risk Factor Collaboration (NCD-RisC). Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants. The Lancet. 2020; 396(10261):1511-1524. doi:10.1016/S0140-6736(20)31859-6
Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med. 1992;11(10):1305-19. doi: 10.1002/sim.4780111005
World Health Organization (WHO). Computation of centiles and z-scores for height-for-age, weight-for-age and bmi-for-age 1-5 https://cdn.who.int/media/docs/default-source/child-growth/growth-reference-5-19-years/computation.pdf?sfvrsn=c2ff6a95_4
World Health Organization (WHO). BMI-for-age (5-19 years) https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age
The Centers for Disease Control and Prevention (CDC). Percentile Data Files with LMS Values. 2009 https://www.cdc.gov/growthcharts/percentile_data_files.htm
Wicklow BA, Becker A, Chateau D, Palmer K, Kozyrskij A, Sellers EA. Comparison of anthropometric measurements in children to predict metabolic syndrome in adolescence: analysis of prospective cohort data. Int J Obes (Lond). 2015;39(7):1070-1078. doi: 10.1038/ijo.2015.55
Tybor DJ, Lichtenstein AH, Dallal GE, Daniels SR, Must A. Independent effects of age-related changes in waist circumference and BMI z scores in predicting cardiovascular disease risk factors in a prospective cohort of adolescent females. Am J Clin Nutr. 2011;93(2):392-401. doi: 10.3945/ajcn.110.001719
Samouda H, de Beaufort C, Stranges S, Guinhouya BC, Gilson G, Hirsch M, Jacobs J, Leite S, Vaillant M, Dadoun F. Adding anthropometric measures of regional adiposity to BMI improves prediction of cardiometabolic, inflammatory and adipokines profiles in youths: a cross-sectional study. BMC Pediatr. 2015;15:168. doi: 10.1186/s12887-015-0486-5
Vanderwall C, Randall Clark R, Eickhoff J, Carrel AL. BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr. 2017;17(1):135. doi: 10.1186/s12887-017-0891-z
Freedman DS, Butte NF, Taveras EM, Goodman AB, Ogden CL, Blanck HM. The Limitations of Transforming Very High Body Mass Indexes into z-Scores among 8.7 Million 2- to 4-Year-Old Children. J Pediatr. 2017;188:50-56.e1. doi: 10.1016/j.jpeds.2017.03.039
Woolcott OO, Bergman RN. Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: A cross-sectional study using NHANES. Sci Rep. 2019;9(1):15279. doi:10.1038/s41598-019-51701-z
Krebs NF, Himes JH, Jacobson D, Nicklas TA, Guilday P, Styne D. Assessment of child and adolescent overweight and obesity. Pediatrics. 2007;120(4):S193-228. doi: 10.1542/peds.2007-2329D
Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond). 2010;34(2):4-17. doi: 10.1038/ijo.2010.234. PMID: 21151146
Woolcott OO, Bergman RN. Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ A cross-sectional study in American adult individuals. Sci Rep. 2018;8(1):10980. doi: 10.1038/s41598-018-29362-1.
Hudda MT, Fewtrell MS, Haroun D, Lum S, Williams JE, Wells JCK, Riley RD, Owen CG, Cook DG, Rudnicka AR, Whincup PH, Nightingale CM. Development and validation of a prediction model for fat mass in children and adolescents: meta-analysis using individual participant data. BMJ. 2019;366:l4293. doi: 10.1136/bmj.l4293
Karava V, Dotis J, Kondou A, Christoforidis A, Liakopoulos V, Tsioni K, Kollios K, Papachristou F, Printza N. Association between relative fat mass, uric acid, and insulin resistance in children with chronic kidney disease. Pediatr Nephrol. 2021;36(2):425-434. doi: 10.1007/s00467-020-04716-y
Ripka WL, Orsso CE, Haqq AM, Prado CM, Ulbricht L, Leite N. Validity and accuracy of body fat prediction equations using anthropometrics measurements in adolescents. Eat Weight Disord. 2021;26(3):879-886. doi: 10.1007/s40519-020-00918-3
Peterson CM, Su H, Thomas DM, Heo M, Golnabi AH, Pietrobelli A, Heymsfield SB. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017;171(7):629-636. doi:10.1001/jamapediatrics.2017.0460
Empringham B, Jennings WJ, Rajan R, Fleming AJ, Portwine C, Johnston DL, Zelcer SM, Rassekh SR, Tran V, Burrow S, Thabane L, Samaan MC. Leptin is Associated with the Tri-Ponderal Mass Index in Children: A Cross-Sectional Study. Adolesc Health Med Ther. 2021;12:9-15. doi: 10.2147/AHMT.S289973
Sims ED, Wang KW, Fleming A, Johnston DL, Zelcer SM, Rassekh SR, Burrow S, Thabane L, Samaan MC. Tri-ponderal mass index in survivors of childhood brain tumors: A cross-sectional study. Sci Rep. 2018;8(1):16336. doi: 10.1038/s41598-018-34602-5
Khoshhali M, Heidari-Beni M, Qorbani M, Motlagh ME, Ziaodini H, Heshmat R, Kelishadi R. Tri-ponderal mass index and body mass index in prediction of pediatric metabolic syndrome: the CASPIAN-V study. Arch Endocrinol Metab. 2020;64(2):171-178. doi: 10.20945/2359-3997000000206
Ramírez-Vélez R, Correa-Bautista JE, Carrillo HA, González-Jiménez E, Schmidt-RioValle J, Correa-Rodríguez M, García-Hermoso A, González-Ruíz K. Tri-Ponderal Mass Index vs. Fat Mass/Height³ as a Screening Tool for Metabolic Syndrome Prediction in Colombian Children and Young People. Nutrients. 2018;10(4):412. doi: 10.3390/nu10040412
Radetti G, Fanolla A, Grugni G, Lupi F, Sartorio A. Indexes of adiposity and body composition in the prediction of metabolic syndrome in obese children and adolescents: Which is the best? Nutr Metab Cardiovasc Dis. 2019;29(11):1189-1196. doi: 10.1016/j.numecd.2019.06.011
Matsuo AR, Lopes WA, Locatelli JC, Simões CF, de Oliveira GH, Nardo N Jr. Tri-ponderal mass index as a tool for insulin resistance prediction in overweight adolescents: A cross-sectional study. Nutrition. 2020;74:110744. doi: 10.1016/j.nut.2020.110744
Wang X, Dong B, Ma J, Song Y, Zou Z, Arnold L. Role of tri-ponderal mass index in cardio-metabolic risk assessment in children and adolescents: compared with body mass index. Int J Obes (Lond). 2020;44(4):886-894. doi: 10.1038/s41366-019-0416-y
Nascimento VG, Bertoli CJ, Gallo PR, Abreu LC, Leone C. Tri-Ponderal Mass Index: A Screening Tool for Risk of Central Fat Accumulation in Brazilian Preschool Children. Medicina (Kaunas). 2019;55(9):577. doi: 10.3390/medicina55090577
El Aarbaoui T, Samouda H, Zitouni D, di Pompeo C, de Beaufort C, Trincaretto F, Mormentyn A, Hubert H, Lemdani M, Guinhouya BC. Does the body adiposity index (BAI) apply to paediatric populations? Ann Hum Biol. 2013;40(5):451-8. doi: 10.3109/03014460.2013.802011
Dobashi K, Takahashi K, Nagahara K, Tanaka D, Itabashi K. Evaluation of Hip/HeightP Ratio as an Index for Adiposity and Metabolic Complications in Obese Children: Comparison with Waist-related Indices. J Atheroscler Thromb. 2017;24(1):47-54. doi: 10.5551/jat.35311
Perona JS, Schmidt Rio-Valle J, Ramírez-Vélez R, Correa-Rodríguez M, Fernández-Aparicio Á, González-Jiménez E. Waist circumference and abdominal volume index are the strongest anthropometric discriminators of metabolic syndrome in Spanish adolescents. Eur J Clin Invest. 2019;49(3):e13060. doi: 10.1111/eci.13060
De Santis Filgueiras M, Cecon RS, de Faria ER, de Faria FR, Pereira PF, Ribeiro AQ, Priore SE, de Novaes JF. Agreement of body adiposity index (BAI) and paediatric body adiposity index (BAIp) in determining body fat in Brazilian children and adolescents. Public Health Nutr. 2019;22(1):132-139. doi: 10.1017/S1368980018002458
Thivel D, O'Malley G, Pereira B, Duché P, Aucouturier J. Comparison of total body and abdominal adiposity indexes to dual x-ray absorptiometry scan in obese adolescents. Am J Hum Biol. 2015;27(3):334-8. doi: 10.1002/ajhb.22643.
Briend A, Alvarez JL, Avril, N. et al. Low mid-upper arm circumference identifies children with a high risk of death who should be the priority target for treatment. BMC Nutr. 2016;2:63. doi:10.1186/s40795-016-0101-7
Thorup L, Hamann SA, Kallestrup P, Hjortdal VE, Tripathee A, Neupane D, Patsche CB. Mid-upper arm circumference as an indicator of underweight in adults: a cross-sectional study from Nepal. BMC Public Health. 2020;20(1):1187. doi: 10.1186/s12889-020-09294-0
Chaput JP, Katzmarzyk PT, Barnes JD, Fogelholm M, Hu G, Kuriyan R, Kurpad A, Lambert EV, Maher C, Maia J, Matsudo V, Olds T, Onywera V, Sarmiento OL, Standage M, Tudor-Locke C, Zhao P, Tremblay MS, ISCOLE Research Group. Mid-upper arm circumference as a screening tool for identifying children with obesity: a 12-country study. Pediatr Obes. 2017;12(6):439-445. doi: 10.1111/ijpo.12162
Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinapaw JMM, Hirasing RA. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis Child. 2019;104(2):159-165. doi: 10.1136/archdischild-2017-313528
Das A, Saimala G, Reddy N, Mishra P, Giri R, Kumar A, Raj A, Kumar G, Chaturvedi S, Babu S, Srikantiah S, Mahapatra T. Mid-upper arm circumference as a substitute of the body mass index for assessment of nutritional status among adult and adolescent females: learning from an impoverished Indian state. Public Health. 2020;179:68-75. doi: 10.1016/j.puhe.2019.09.010
Ezeofor IO, Garcia AL, Wright CM. Criteria for undernutrition screening in hospitalised infants under 6 months: a diagnostic accuracy study in a resource-poor setting. Arch Dis Child. 2020;105(6):524-529. doi: 10.1136/archdischild-2019-318313
Kpewou DE, Poirot E, Berger J, Som SV, Laillou A, Belayneh SN, Wieringa FT. Maternal mid-upper arm circumference during pregnancy and linear growth among Cambodian infants during the first months of life. Matern Child Nutr. 2020;16(2):e12951. doi: 10.1111/mcn.12951
Rerksuppaphol S, Rerksuppaphol L. Mid-Upper-Arm Circumference and Arm-to-Height Ratio to Identify Obesity in School-Age Children. Clin Med Res. 2017;15(3-4):53-58. doi: 10.3121/cmr.2017.1365
Nowak-Szczepanska N, Gomula A, Koziel S. Mid-upper arm circumference and body mass index as different screening tools of nutritional and weight status in Polish schoolchildren across socio-political changes. Sci Rep. 2019;9(1):12399. doi: 10.1038/s41598-019-48843-5
Matjuda EN, Engwa GA, Letswalo PB, Mungamba MM, Sewani-Rusike CR, Nkeh-Chungag BN. Association of Hypertension and Obesity with Risk Factors of Cardiovascular Diseases in Children Aged 6-9 Years Old in the Eastern Cape Province of South Africa. Children (Basel). 2020;7(4):25. doi: 10.3390/children7040025
Liu X, Xu X, Shang R, Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide. 2018;78:113-120. doi: 10.1016/j.niox.2018.06.004
Ozturk A, Cicek B, Mazicioglu MM, Kurtoglu S. Determining abdominal obesity cut-offs and relevant risk factors for anthropometric indices in Turkish children and adolescents. J Pediatr Endocrinol Metab. 2015;28(5-6):525-32. doi:10.1515/jpem-2014-0327
Zhu Y, Lin Q, Zhang Y, Deng H, Hu X, Yang X, Yao B. Mid-upper arm circumference as a simple tool for identifying central obesity and insulin resistance in type 2 diabetes. PLoS One. 2020;15(5):e0231308. doi: 10.1371/journal.pone.0231308
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 782
Number of citations: 0