Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Pleiotropic effects of vitamin D3
  • Home
  • /
  • Pleiotropic effects of vitamin D3
  1. Home /
  2. Archives /
  3. Vol. 11 No. 7 (2021) /
  4. Review Articles

Pleiotropic effects of vitamin D3

Authors

  • Dominika Egierska Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Paulina Pietruszka Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Paulina Burzyńska Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Izabela Chruścicka Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Justyna Buchta Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu

DOI:

https://doi.org/10.12775/JEHS.2021.11.07.013

Keywords

Vitamin D3, cholecalciferol, calcitriol

Abstract

Introduction: Vitamin D belongs to the group of fat-soluble vitamins. cholecalciferol (D3) and ergocalciferol (D2) are the most important forms. Vitamin D is associated with a regulatory role in calcium and phosphate metabolism. In recent years, there has been attention to its pleiotropic action. 


Aim: The aim of the study was to present the general characteristics of vitamin D and explore its relation with polycystic ovary syndrome (PCOS), endometriosis, pain management, insulin resistance, influenza and chronic kidney disease (CKD).


Description: VDR receptor has been detected in the cells of the intestines, bones, kidneys, heart, brain, prostate, breast, ovaries, skin. In the ovaries, vit. D3 affects the production of progesterone, estradiol or estrone which suggest its important role in the folliculogenesis and ovulation. Women with PCOS have significantly lower levels of vitamin D3 compared to healthy women. It has been suggested that the deficiency of this vitamin may be related to infertility. Research show that vit. D3 may affect the mechanisms of the inflammatory and nocyceptive pain perception. A significant connection has also been found between vit. D3 and the metabolism of the adipose tissue and insulin secretion. Vitamin D3 deficiency may increase the risk of development of obesity and insulin resistance as well as CKD.


Summary: The observation of statistically significant correlation between the reduced level of vit. D3 and occurrence of numerous diseases indicates the need for further research to explain the mechanisms in which D3 deficiency may contribute to development of these diseases. This knowledge is important for the development of new prevention and treatment methods of the diseases mentioned in this article.


References

Sajkowska-Kozielewicz JJ, Paradowska K. Witamina D – składnik o wielostronnym działaniu. Herbalism. 2016; 1(2): 35-58. https://doi.org/10.12775/herb.2016.003

Spiro A, Buttriss JL. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014; 39(4): 322–350. https://doi.org/10.1111/nbu.12108

Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2015; 96(1): 365–408. https://doi.org/ 10.1152/physrev.00014.2015

Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014; 21(3): 319–329. http://dx.doi.org/10.1016/j.chembiol.2013.12.016

Rusinska A, Płudowski P, Walczak M, et al. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland-Recommendations of the Polish society of pediatric endocrinology and diabetes and the expert panel with participation of national specialist consultants and representatives of scientific societies-2018 update. Front. Endocrinol. (Lausanne). 2018; 9(5): 1–24. https://doi.org/10.3389/fendo.2018.00246

Herian M, Grzesiak M. Rola witaminy D i jej metabolitów w metabolizmie wapniowo-fosforanowym. Kosmos. 2017; 30(4): 515–549.

Brzozowska M, Karowicz-Bilińska A. Rola niedoboru witaminy D w patofizjologii zaburzeń występujących w zespole policystycznych jajników. Ginekol. Pol. 2013; 84(6): 456–460.

Voulgaris N, Papanastasiou L, Piaditis G, et al. Vitamin D and aspects of female fertility. Hormones. 2017; 16(1): 5–21. https://doi.org/10.14310/horm.2002.1715

Harris HR, Chavarro JE, Malspeis S, et al. Original Contribution Dairy-Food, Calcium, Magnesium, and Vitamin D Intake and Endometriosis: A Prospective Cohort Study. American Journal of Epidemiology. 2013; 177(5): 420–430. https://doi.org/10.1093/aje/kws247

Akyol A, Simsek M, Ilhan R, et al. Efficacies of vitamin D and omega-3 polyunsaturated fatty acids on experimental endometriosis. Taiwan. J. Obstet. Gynecol. 2016; 55(6): 835–839. https://doi.org/ 10.1016/j.tjog.2015.06.018

Helde-Frankling M, Björkhem-Bergman L. Vitamin D in pain management. Int. J. Mol. Sci. 2017; 18(10): 1–9. https://doi.org/10.3390/ijms18102170

Bergman P, Sperneder S, Höijer J, et al. Low Vitamin D levels are associated with higher opioid dose in palliative cancer patients-results from an observational study in Sweden. PLoS One. 2015; 10(5): 1–11. https://doi.org/10.1371/journal.pone.0128223

Gendelman O, Itzhaki D, Makarov S, et al. A randomized double-blind placebo-controlled study adding high dose Vitamin D to analgesic regimens in patients with musculoskeletal pain. Lupus. 2015; 24(4–5): 483–489. https://doi.org/10.1177/0961203314558676

Wepner F, Scheuer R, Schuetz-Wieser B, et al. Effects of vitamin D on patients with fibromyalgia syndrome: A randomized placebo-controlled trial. Pain. 2014; 155(2): 261–268. http://dx.doi.org/10.1016/j.pain.2013.10.002

Gatenby P, Lucas R, Swaminathan A. Vitamin D deficiency and risk for rheumatic diseases: An update. Curr. Opin. Rheumatol. 2013; 25(2): 184–191. https://doi.org/10.1097/BOR.0b013e32835cfc16

Frigstad SO, Høivik ML, Jahnsen J, et al. Pain severity and vitamin D deficiency in IBD patients. Nutrients. 2020; 12(1): 1–12. https://doi.org/10.3390/nu12010026

Khayznikov M., Hemachrandra K., Pandit R., et al. Statin Intolerance Because of Myalgia, Myositis, Myopathy, or Myonecrosis Can in Most Cases be Safely Resolved by Vitamin D Supplementation. North American Journal of Medical Science. 2015; 7(3): 86-93. https://doi.org/10.4103/1947-2714.153919

Glueck CJ, Budhani SB, Masineni SS, et al. Vitamin D deficiency, myositismyalgia, and reversible statin intolerance. Curr. Med. Res. Opin. 2011; 27(9): 1683–1690. https://doi.org/10.1185/03007995.2011.598144

Schreuder F, Bernsen RMD, van der Wouden JC. Vitamin D supplementation for nonspecific musculoskeletal pain in non-western immigrants: A randomized controlled trial. Ann. Fam. Med. 2012; 10(6): 547–555. https://doi.org/10.1370/afm.1402

Szymczak-Pajor I, Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients. 2019; 11(4): 794. https://doi.org/10.3390/nu11040794

Wang H, Weiwen C, Dongqing L, et al. Vitamin D and chronic diseases. Aging Dis. 2017; 8(3): 346-353. https://doi.org/10.14336/AD.2016.1021

Tao S, Yuan Q, Mao L, et al. Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes. Oncotarget. 2017; 8(40): 67605–67613. https://doi.org/10.18632/oncotarget.18754

Abbas MA. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol. 2017; 165: 369–381. https://doi.org/10.1016/j.jsbmb.2016.08.004

Li YX, Zhou L. Vitamin D deficiency, obesity and diabetes. Cell. Mol. Biol. 2015; 61(3): 35-38. https://doi.org/10.14715/cmb/2015.61.3.8

Altieri B, Grant WB, Casa SD, et al. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit. Rev. Food Sci. Nutr. 2017; 57(16): 3472–3488. https://doi.org/10.1080/10408398.2015.1136922

Nimitphong H, Park E, Lee MJ, et al. Vitamin D regulation of adipogenesis and adipose tissue functions. Nutrition research and practice. 2020; 14(6): 553-567. https://doi.org/10.4162/nrp.2020.14.6.553

Chang E, Kim Y. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes. Nutrition. 2016; 32(6): 702-8. https://doi.org/10.1016/j.nut.2015.12.032

Li B, Baylink DJ, Deb C, et al. 1,25-Dihydroxyvitamin D3 Suppresses TLR8 Expression and TLR8-Mediated Inflammatory Responses in Monocytes In Vitro and Experimental Autoimmune Encephalomyelitis In Vivo. PLoS One. 2013; 8(3): e58808. https://doi.org/10.1371/journal.pone.0058808

Jean G, Souberbielle JC, Chazot C. Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients. 2017; 9(4): 328. https://doi.org/10.3390/nu9040328.

Lee M, Lin CH, Lei WT, et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A Systematic Review and Meta-Analysis. 2018; 25: 1–12. https://doi.org/10.3390/nu10040409

Gruber-bzura BM. Vitamin D and Influenza- Prevention or Therapy?. Int. J. Mol. Sci. 2018; 19(8): 2419. https://doi.org/10.3390/ijms19082419

Vanherwegen A-S, Gysemans C, Mathieu C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinology and Metabolism Clinics of North America, 2017; 46(4): 1061–1094. https://doi.org/10.1016/j.ecl.2017.07.010

Rondanelli M, Miccono A, Lamburghini S, et al. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evidence-Based Complementary and Alternative Medicine. 2018; 2018: 5813095. https://doi.org/10.1155/2018/5813095

Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin d supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients. 2020; 12(4): 1–19. https://doi.org/10.3390/nu12040988

Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System – Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12(1): 236. https://doi.org/10.3390/nu12010236

Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Reviews in medical virology. 2017; 27(1): e1909. https://doi.org/10.1002/rmv.1909

Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010; 91(5): 1255–1260. https://doi.org/10.3945/ajcn.2009.29094

Bergman P, Lindh AU, Bjorkhem-Bergman L, et al. Vitamin D and Respiratory Tract Infections : A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLOS ONE. 2013; 8(6): e65835. https://doi.org/10.1371/journal.pone.0065835

Osterholm MT, Kelley NS, Sommer A. Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. 2012; 12(1): 36–44. https://doi.org/10.1016/S1473-3099(11)70295-X

Restrepo VCA, Aguirre AJV. Vitamin D in patients with chronic kidney disease stages 2-5. Colombia Médica. 2016; 47(3): 160–166. https://doi.org/10.2510/colomb.med..v50i1.4444

Kaur G, Singh J, Kumar J. Vitamin D and cardiovascular disease in chronic kidney disease. Pediatr Nephrol. 2019; 34(12): 2509-2522. https://doi.org/10.1007/s00467-018-4088-y

Gois PHF, Wolley M, Ranganathan D, et al. Vitamin D deficiency in chronic kidney disease: Recent evidence and controversies. Int. J. Environ. Res. Public Health. 2018; 15(8): 1–16. https://doi.org/

Gonzales EA, Sachdeva A, Oliver DA, et al. Vitamin D Insufficiency and Deficiency in Chronic Kidney Disease. American Journal of Nephrology. 2004; 24(5): 503–510. https://doi.org/10.1159/000081023

Cankaya E, Bilen Y, Keles M, et al. Comparison of Serum Vitamin D Levels Among Patients With Chronic Kidney Disease, Patients in Dialysis, and Renal Transplant Patients. Transplantation Proceedings. 2015; 47(5): 1405–1407. https://doi.org/10.1016/j.transproceed.2015.04.036

Jean D, Souberbielle JC, Chazot C. Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients. 2017; 9(4): 1–15. https://doi.org/10.3390/nu9040328

Lai S, Coppola B, Dimko M, et al. Vitamin D deficiency, insulin resistance, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren. Fail. 2014; 36(1): 58–64. https://doi.org/10.3109/0886022X.2013.832308

Liu G, Pi H, Hao L, et al. Vitamin D Status Is an Independent Risk Factor for Global Cognitive Impairment in Peritoneal Dialysis Patients. PLoS ONE. 2015; 10(12): 1–13. https://doi.org/10.1371/journal.pone.0143782

Zand L, Kumar R, Clinic M. The Use of Vitamin D Metabolites and Analogs in the Treatment of Chronic Kidney Disease. Endocrinol Metab Clin North Am. 2017; 46(4): 983–1007. https://doi.org/10.1016/j.ecl.2017.07.008

Lin Y-C, Chang Y-H, Yang S-H,, et al. Update of pathophysiology and management of diabetic kidney disease. Journal of the Formosan Medical Association 2018; 117(8): 662-675. https://doi.org/10.1016/j.jfma.2018.02.007

Ekart R, Bevc S, Hojs R, et al. Proteinuria and Albuminuria During and After Paricalcitol Treatment in Chronic Kidney Disease Patients. The Journal of Clinical Pharmacology 2016; 56(6): 761-768. https://doi.org/10.1002/jcph.660

Pilz S, Iodice S, Zittermann A, et al. Vitamin D Status and Mortality Risk in CKD: A Meta-analysis of. YAJKD. 2011; 58(3): 374–382. https://doi.org/10.1053/j.ajkd.2011.03.020

Jean G, Lataillade D, Genet L, et al. Impact of Hypovitaminosis D and Alfacalcidol Therapy on Survival of Hemodialysis Patients: Results from the French ARNOS Study. Nephron Clin Pract 2011; 118(2): 204–210. https://doi.org/10.1159/0003215

Downloads

  • PDF

Published

2021-07-21

How to Cite

1.
EGIERSKA, Dominika, PIETRUSZKA, Paulina, BURZYŃSKA, Paulina, CHRUŚCICKA, Izabela & BUCHTA, Justyna. Pleiotropic effects of vitamin D3. Journal of Education, Health and Sport [online]. 21 July 2021, T. 11, nr 7, s. 143–155. [accessed 1.4.2023]. DOI 10.12775/JEHS.2021.11.07.013.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 11 No. 7 (2021)

Section

Review Articles

License

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 241
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Vitamin D3, cholecalciferol, calcitriol
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop