Determination of the effect of Ag nanoparticles impregnated in medical polyethylene products together with the LED radiation of the red and violet spectra on the ability of microorganisms to form biofilms and on daily biofilms
DOI:
https://doi.org/10.12775/JEHS.2021.11.01.022Keywords
biofilm formation, Ag nanoparticles, low-density polyethylene, non-woven polymeric material, LEDAbstract
The paper is devoted to the study of antimicrobial activity of nanocomposites on the example of low density polyethylene andnonwoven polymeric material based on wool and synthetic polyester fiber, which were impregnated with Ag nanoparticles by the original method, in a complex with LED red (610-760nm) and violet (380-430nm) spectra. Formation of microorganisms’ biofilms was studied on the surface of microtiter plates for enzyme-linked immunosorbent assay. It was determined that the studied combinations inhibit the process of formation of biofilms by planktonic cells and disorganize the formed daily biofilms, which can promote the penetration of antibacterial agents.References
Malanchuk S. H. Vplyv svitlodiodnoho vyprominiuvannia z protymikrobnymy preparatamy na faktory patohennosti Staphylococcus aureus ta Escherichia coli [Tekst] : avtoref. dys. ... kand. biol. nauk : 03.00.07 / Malanchuk Svitlana Henadiivna [tobto Hennadiivna] ; NAN Ukrainy, In-t mikrobiolohii i virusolohii im. D. K. Zabolotnoho. - Kyiv, 2015. - 24 s.
Dubovyk O.S. Mikrobiolohichna otsinka vplyvu svitlodiodnoho vyprominiuvannia ta protymikrobnykh zasobiv na komunikatyvni vlastyvosti mikroorhanizmiv, zbudnykiv hniino-zapalnykh protsesiv: Dysertatsiia na zdobuttia naukovoho stupenia kandydata biolohichnykh nauk: Kyiv, 2020.- 234c.
Dai, T., Gupta, A., Murray, C. K., Vrahas, M. S., Tegos, G. P., &Hamblin, M. R. (2012). Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 15(4), 223–236. https://doi.org/10.1016/j.drup.2012.07.001
Ratti, M., Naddeo, J.J., Tan, Y. etal. Irradiation with visible light enhances the antibacterial toxicity of silver nanoparticles produced by laser ablation. Appl. Phys. A 122, 346 (2016). https://doi.org/10.1007/s00339-016-9935-8
Shi, J., Xu, B., Sun, X., Ma, C., Yu, C., & Zhang, H. (2013). Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: effect of particle size. Aquatictoxicology (Amsterdam, Netherlands), 132-133, 53–60. https://doi.org/10.1016/j.aquatox.2013.02.001
Kim, M. J., &Yuk, H. G. (2017). Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature. Applied and environmental microbiology, 83(5), e02582-16. https://doi.org/10.1128/AEM.02582-16
Kim, M. J., Tang, C. H., Bang, W. S., & Yuk, H. G. (2017). Antibacterial effect of 405±5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. International journal of food microbiology, 244, 82–89. https://doi.org/10.1016/j.ijfoodmicro.2016.12.023
O’Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54(1), 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
Korobov A.M. Novaia tekhnyka dlia noveishykh tekhnolohyi svetoterapyy. Materyalы yubyleinoi KhKh Mezhdunarodnoi nauchno-praktycheskoi konferentsyy «Prymenenye lazerov v medytsyne y byolohyy», Yalta, 8-11 oktiabria 2003 h. – Kharkov: NPMBK «Lazer y zdorove», 2003; S.114-117.
Korobov A.M., Korobov V.A., T.A.Lesnaia. Fototerapevtycheskye apparatы Korobova seryy «Barva». Monohrafyia. Kharkov.: YPP «Kontrast», 2006. 176 s.
Díaz-Visurraga J., Gutiérrez C., von Plessing C., García A. Metal nanostructures as antibacterial agents. Science against microbial pathogens: communicating current research and technological advances. Microbiology Series. 2011; 3(1): 210-218.
Taurozzi J. Arulb S. H., Bosakc V. Z., Burbanc A. F., Voicea T. C., Brueningd M. L., Tarabaraa V.V. Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. Journal of Membrane Science. 2008; 325 (1): 58-68.
Bhabra G., Sood A., Fisher B., Cartwright L., Saunders M. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnology. 2009; 4: 876-883.
Szczepanowicz K., Stefańska J., Socha R.P., Warszyński P. Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem. Probl. Miner. Process. 2010; 45: 85-98.
Bragg P.D., Rainnie D.J. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 2014; 228: 883-889.
Donnelly RF., Fletcher N.C., McCague P.J., Donnelly J., McCarron P.A., Tunney M., Design M., Synthesis and Photodynamic Antimicrobial Activity of Ruthenium Trischelate Diimine Complexes. Letters in Drug Design & Discovery. 2007; 4 (3): 175-179.
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 493
Number of citations: 0