Machine learning methods as an aid in planning orthodontic treatment on the example of Cone-Beam Computed Tomography analysis: a literature review
DOI:
https://doi.org/10.12775/JEHS.2021.11.01.010Keywords
CBCT, Cone-Beam Computed Tomography, deep learning, machine learning, orthodonticsAbstract
Convolutional neural networks (CNNs) are used in many areas of computer vision, such as object tracking and recognition, security, military, and biomedical image analysis. In this work, we describe the current methods, the architectures of deep convolutional neural networks used in CBCT. Literature from 2000-2020 from the PubMed database, Google Scholar, was analyzed. Account has been taken of publications in English that describe architectures of deep convolutional neural networks used in CBCT. The results of the reviewed studies indicate that deep learning methods employed in orthodontics can be far superior in comparison to other high-performing algorithms.References
Kapila, S.D., Nervina, J.M., 2015. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofacial Radiology 44, 20140282.
Lee, H., Park, M., Kim, J., 2017. Cephalometric landmark detection in dental x-ray images using convolutional neural networks, in: Armato, S.G., Petrick, N.A. (Eds.), Medical Imaging 2017: Computer-Aided Diagnosis. Presented at the SPIE Medical Imaging, SPIE.
Larson, B.E., 2012. Cone-beam computed tomography is the imaging technique of choice for comprehensive orthodontic assessment. American Journal of Orthodontics and Dentofacial Orthopedics 141, 402–410.
Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzebski, S., Fevry, T., Katsnelson, J., Kim, E., Wolfson, S., Parikh, U., Gaddam, S., Lin, L.L.Y., Ho, K., Weinstein, J.D., Reig, B., Gao, Y., Toth, H., Pysarenko, K., Lewin, A., Lee, J., Airola, K., Mema, E., Chung, S., Hwang, E., Samreen, N., Kim, S.G., Heacock, L., Moy, L., Cho, K., Geras, K.J.,
Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Trans. Med. Imaging 39, 1184–1194.
Włodarczyk, T., Płotka, S., Trzciński, T., Rokita, P., Sochacki-Wójcicka, N., Lipa, M., Wójcicki, J., 2019. Estimation of Preterm Birth Markers with U-Net Segmentation Network, in: Wang, Q., Gomez, A., Hutter, J., McLeod, K., Zimmer, V., Zettinig, O., Licandro, R., Robinson, E., Christiaens, D., Turk, E.A., Melbourne, A. (Eds.), Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis. Springer International Publishing, Cham, pp. 95–103.
Włodarczyk, T., Płotka, S., Rokita, P., Sochacki-Wójcicka, N., Wójcicki, J., Lipa, M., Trzciński, T., 2020. Spontaneous Preterm Birth Prediction Using Convolutional Neural Networks, in: Hu, Y., Licandro, R., Noble, J.A., Hutter, J., Aylward, S., Melbourne, A., Abaci Turk, E., Torrents Barrena, J. (Eds.), Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. Springer International Publishing, Cham, pp. 274–283.
Kapinski, N., Zielinski, J., Borucki, B.A., Trzcinski, T., Ciszkowska-Lyson, B., Nowinski, K.S., 2018. Estimating Achilles Tendon Healing Progress with Convolutional Neural Networks, in: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer International Publishing, Cham, pp. 949–957.
Pavaloiu, I.-B., Goga, N., Vasilateanu, A., Marin, I., Ungar, A., Patrascu, I., Ilie, C., 2015. Neural network based edge detection for CBCT segmentation, in: 2015 E-Health and Bioengineering Conference (EHB). Presented at the 2015 E-Health and Bioengineering Conference (EHB), IEEE, Iasi, Romania, pp. 1–4.
Miki, Y., Muramatsu, C., Hayashi, T., Zhou, X., Hara, T., Katsumata, A., Fujita, H., 2017. Classification of teeth in cone-beam CT using deep convolutional neural network. Computers in Biology and Medicine 80, 24–29.
Miki, Y., Muramatsu, C., Hayashi, T., Zhou, X., Hara, T., Katsumata, A., Fujita, H., 2017. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification, in: Armato, S.G., Petrick, N.A. (Eds.), . Presented at the SPIE Medical Imaging, Orlando, Florida, United States, p. 101343E.
Egger, J., Pfarrkirchner, B., Gsaxner, C., Lindner, L., Schmalstieg, D., Wallner, J., 2018. Fully Convolutional Mandible Segmentation on a valid Ground- Truth Dataset, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Honolulu, HI, pp. 656–660.
Yeghiazaryan, V., Voiculescu, I., 2015. An Overview of Current Evaluation Methods Used in Medical Image Segmentation (Technical Report No. RR-15-08). Department of Computer Science, Oxford, UK.
Ezhov, M., Zakirov, A., Gusarev, M., 2019. Coarse-to-fine volumetric segmentation of teeth in cone-beam ct, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Presented at the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), IEEE, Venice, Italy, pp. 52–56.
Cui, Z., Li, C., Wang, W., 2019. ToothNet: Automatic Tooth Instance Segmentation and Identification From Cone Beam CT Images, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Long Beach, CA, USA, pp. 6361– 6370.
Minnema, J., Eijnatten, M., Hendriksen, A.A., Liberton, N., Pelt, D.M., Batenburg, K.J., Forouzanfar, T., Wolff, J., 2019. Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network. Med. Phys. 46, 5027–5035.
Torosdagli, N., Liberton, D.K., Verma, P., Sincan, M., Lee, J.S., Bagci, U., 2019. Deep Geodesic Learning for Segmentation and Anatomical Landmarking. IEEE Trans. Med. Imaging 38, 919–931.
Chen, Y., Du, H., Yun, Z., Yang, S., Dai, Z., Zhong, L., Feng, Q., Yang, W., 2020. Automatic Segmentation of Individual Tooth in Dental CBCT Images From Tooth Surface Map by a Multi-Task FCN. IEEE Access 8, 97296–97309.
Chung, M., Lee, M., Hong, J., Park, S., Lee, Jusang, Lee, Jingyu, Yang, I.-H., Lee, Jeongjin, Shin, Y.-G., 2020. Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation. Computers in Biology and Medicine 120, 103720.
Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV). Presented at the 2016 Fourth International Conference on 3D Vision (3DV), IEEE, Stanford, CA, USA, pp. 565–571.
Kim, I., Misra, D., Rodriguez, L., Gill, M., Liberton, D.K., Almpani, K., Lee, J.S., Antani, S., 2020. Malocclusion Classification on 3D Cone-Beam CT Craniofacial Images Using Multi- Channel Deep Learning Models *, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Presented at the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian
Raudaschl, P.F., Zaffino, P., Sharp, G.C., Spadea, M.F., Chen, A., Dawant, B.M., Albrecht, T., Gass, T., Langguth, C., Lüthi, M., Jung, F., Knapp, O., Wesarg, S., Mannion-Haworth, R., Bowes, M., Ashman, A., Guillard, G., Brett, A., Vincent, G., Orbes-Arteaga, M., Cárdenas- Peña, D., Castellanos-Dominguez, G., Aghdasi, N., Li, Y., Berens, A., Moe, K., Hannaford, B., Schubert, R., Fritscher, K.D., 2017. Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med. Phys. 44, 2020–2036.
Kwak, G.H., Kwak, E.-J., Song, J.M., Park, H.R., Jung, Y.-H., Cho, B.-H., Hui, P., Hwang, J.J., 2020. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep 10, 5711.
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 2016. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, in: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (Eds.), Medical Image Computing and Computer- Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp. 424–432.
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495.
Lee, J., Kim, D., Jeong, S., 2020. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis 26, 152– 158.
Lee, S., Woo, S., Yu, J., Seo, J., Lee, J., Lee, C., 2020. Automated CNN-Based Tooth Segmentation in Cone-Beam CT for Dental Implant Planning. IEEE Access 8, 50507–50518.
Setzer, F.C., Shi, K.J., Zhang, Z., Yan, H., Yoon, H., Mupparapu, M., Li, J., 2020. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. Journal of Endodontics 46, 987–993.
Wu, X., Chen, H., Huang, Y., Guo, H., Qiu, T., Wang, L., 2020. Center-Sensitive and Boundary-Aware Tooth Instance Segmentation and Classification from Cone-Beam CT, in: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). Presented at the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), IEEE, Iowa City, IA, USA, pp. 939–942.
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K., 2018. DenseASPP for Semantic Segmentation in Street Scenes, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Presented at the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Salt Lake City, UT, USA, pp. 3684–3692.
Zhao, M., Ma, L., Tan, W., Nie, D., 2005. Interactive Tooth Segmentation of Dental Models, in: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Presented at the 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Shanghai, pp. 654–657.
Akhoondali, H., Zoroofi, R.A., Shirani, G., 2009. Rapid Automatic Segmentation and Visualization of Teeth in CT-Scan Data. J. of Applied Sciences 9, 2031–2044.
Wang, L., Gao, Y., Shi, F., Li, G., Chen, K.-C., Tang, Z., Xia, J.J., Shen, D., 2015. Automated segmentation of dental CBCT image with prior-guided sequential random forests: Automated segmentation of dental CBCT image. Med. Phys. 43, 336–346.
Barone, S., Paoli, A., Razionale, A.V., 2016. CT segmentation of dental shapes by anatomy-driven reformation imaging and B-spline modelling: Tooth Segmentation by Anatomy-Driven and B-spline Modelling Processes. Int. J. Numer. Meth. Biomed. Engng. 32, e02747.
Pei, Y., Ai, X., Zha, H., Xu, T., Ma, G., 2016. 3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images: Exemplar-based random walks for tooth segmentation. Med. Phys. 43,
Fan, Y., Beare, R., Matthews, H., Schneider, P., Kilpatrick, N., Clement, J., Claes, P., Penington, A., Adamson, C., 2019. Marker-based watershed transform method for fully automatic mandibular segmentation from CBCT images. Dentomaxillofacial Radiology 48, 20180261.
Hiew, L.T., Ong, S.H., Foong, K.W.C., 2010. Tooth Segmentation From Cone-Beam CT Using Graph Cut.
Kakehbaraei, S., Seyedarabi, H., Zenouz, A., 2018. Dental segmentation in cone-beam computed tomography images using watershed and morphology operators. J Med Signals Sens 8, 119.
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 744
Number of citations: 0