Implementation of experimental cellular (cellular-genetic) therapies on the example of eye diseases
DOI:
https://doi.org/10.12775/JEHS.2020.10.09.065Keywords
cellular therapies, stem cell, eye diseasesAbstract
The development of technology and a modern research approach in the 21st century has enabled access to new therapies in many fields of medicine and nanotechnology. Work on the use of cellular therapies is carried out in leading centers around the world. According to the "clinicaltraial.gov" service, it is estimated that there are about 5.5 thousand clinical trials using stem cells. The classification of stem cells is based on their potential to differentiate into other cells, tissues, organs or the whole organism. In cell therapy 3 groups of stem cells are used: Pluripotent Stem Cells (PSC), multipotent and unipotent, which have two common features: the ability to self-revalue, that is, to divide and to differentiate in many directions. To date, there are no objective, randomized clinical trials that would clearly determine the efficacy and safety of the cell therapy used in ophthalmic diseases. Hope is given by gene therapies such as the recently approved Luxturna™ gene therapy used in hereditary retinal degeneration caused by mutations in the RPE65 gene. Research is currently underway on experimental cell therapies to treat the following diseases of the optic system: glaucoma, retinopathy, age-related macular degeneration (AMD), optic nerve atrophy, retinal pigmentation (RP) and Stargardt's disease. Stem cell-based medical therapies are a promising and rapidly developing method of innovative treatment, especially for conditions that were previously considered incurable. The use of experimental cellular gene therapies in diseases of the visual organ gives hope to both patients and scientists, but the age of regenerative medicine has yet to come.References
Gávez P, Ruiz A, Clares B. The future of clinical medicine in new therapies: cell, gene and nanomedicine. Med Clin (Barc) 2011;137:645–649 DOI: 10.1016/j.medcli.2010.12.005.
Renata S. Advanced medicinal products medical therapy based on mesenchymal stem cells. Farm Pol.2018;74(3):178‐183.
The Nobel Prize in Physiology or Medicine 2007. NobelPrize.org. Nobel Media AB 2020. Fri. 29 May 2020. https://www.nobelprize.org/prizes/medicine/2007/summary/.
Thomson JA, Itskovitz-Eldor J, Waktniz MA, Swiergiel JJ, MarshalL VS, Jones JM, Embryonic stem cell lines derived from human blastocysts, Science 1998; 282(5391):1145-1147.
https://clinicaltrials.gov/ct2/results/map?cond=stem+cells&map=EU, entry 01.06.2020r.
Appelbaum JS, Milano F. Hematopoietic Stem Cell Transplantation in the Era of Engineered Cell Therapy. Curr Hematol Malig Rep. 2018;13(6):484‐493. DOI:10.1007/s11899-018-0476-4.
Papapetrou EP. Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. Adv Exp Med Biol 2017;1013:219‐240. DOI:10.1007/978-1-4939-7299-9_9.
Petrof G, Abdul-Wahab A, McGrath JA. Cell therapy in dermatology. Cold Spring Harb Perspect Med 2014;4(6):a015156. DOI:10.1101/cshperspect.a015156.
Badner A, Siddiqui AM, Fehlings MG. Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther 2017;17(5):529‐541. DOI:10.1080/14712598.2017.1308481.
Vakharia RM, Roche MW, Alcerro JC, Lavernia CJ. The Current Status of Cell-Based Therapies for Primary Knee Osteoarthritis. Orthop Clin North Am 2019;50(4):415‐423. DOI:10.1016/j.ocl.2019.06.001.
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant 2017;26(9):1551‐1559. DOI:10.1177/0963689717735411.
Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS. Stem cell therapy for neurological disorders. S Afr Med J 2019;109(8b):70‐77. DOI:10.7196/SAMJ.2019.v109i8b.14009.
Yongjun C, Xiaowen J, Yumeng S, Weibo W. Therapeutic effect of mesenchymal stem cell on Hashimoto’s thyroiditis in a rat model by modulating Th17/Treg cell balance. Autoimmunity 2020; 53(1):35-45, DOI: 10.1080/08916934.2019.1697689.
Lejkowska R, Kawa MP, Pius-Sadowska E et al. Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int J Mol Sci 2019; 20(3): 777.
Cotrim CC, Toscano L, Messias A et al. Intravitreal use of bone marrow mononuclear fraction containing CD34+stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol 2017;11:931-8.
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig 2018;5:18.
Szabłowska-Gadomska I, Bużańska L., Małecki M, Właściwości komórek macierzystych, regulacje prawne oraz zastosowanie w medycynie, Postepy Hig Med Dosw (online) 2017;71:1216-1230.
Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells
Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells.
Commission Directive 2006/86/EC of 24 October 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells.
Commission Directive (EU) 2015/565 of 8 April 2015 amending Directive 2006/86/EC as regards certain technical requirements for the coding of human tissues and cells.
Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products.
Rozporządzenie Ministra Zdrowia z dnia 29 września 2016r. w sprawie szczegółowych warunków pobierania, przechowywania i przeszczepiania komórek, tkanek; Rozporządzenie Ministra Zdrowia z dnia 29 czerwca 2011r. w sprawie wzoru wniosku o wydanie zgody na wytwarzanie produktów leczniczych terapii zaawansowanej i narządów Dz.U. poz. 1674.
Ustawa z dnia 23 marca 2017r. o zmianie ustawy o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów Dz.U.2017 poz. 798.
Ustawa z dnia 24 lutego 2017r.o zmianie ustawy o zawodach lekarza i lekarza dentysty oraz ustawy o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów Dz.U. 2017 poz. 767.
Ustawa z dnia 1 lipca 2005 r. o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów Opracowano na podstawie: Dz. U. z 2005 r. Nr 169, poz. 1411, z 2009r. Nr 141, poz. 1149.
Ustawa z dnia 17 lipca 2009r. o zmianie ustawy o pobieraniu, przechowywaniu i przeszczepianiu komórek, tkanek i narządów oraz o zmianie ustawy - Przepisy wprowadzające Kodeks karny. Dz.U. 2009 nr 141 poz. 1149.
Machalińska A. Cell therapy in degenerative retinal diseases: expectations and threats. OphthaTherapy 2020;7:30-35. DOI: 10.24292/01.OT.310320.04.
Kucia M, Drukała J. Postępy w metodach hodowli komórek dla transplantologii Komórki macierzyste. Postępy Biol. Kom 2002; 2:257-268.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145-1147.
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920.
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015;17:11–22.
Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tis-sues: from biology to cell therapy. World J Stem Cells 2010;2:81–92.
Gávez P, Clares B, Hmadcha A, Ruiz MA, Soria B. Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull 2013;105:85–105.
Zakrzewski W, Dobrzyński M, Szymonowicz M. i in. Stem cells: past, present, and future. Stem Cell Res Ther 2019;10:68. DOI: 10.1186/s13287-019-1165-5.
Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cel Mol Med 2004;8:301–316.
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–1301.
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem Cells In Skin Regeneration, Wound Healing, and Their Clinical Applications.Int J Mol Sci 2015;23:25476-25501.
Lapouge G, Blanpain C. Medical applications of epidermal stemcells. 2008In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008; www.ncbi.nlm.nih.gov/books/NBK27047.
ApteRS.Gene therapy for retinal degeneration. Cell 2018;173:5.
Singh M, Tyagi SC. Genes and genetics in eye diseases: a genomic medicine approach for investigating hereditary and inflammatory ocular disorders. Int JOphthalmol 2018;11(1):117‐134. DOI:10.18240/ijo.2018.01.20.
Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020;75:100779. DOI:10.1016/j.preteyeres.2019.100779.
Song MJ, Bharti K. Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling.Brain Res 2016;1638: 2-14.
Golestaneh N, Chu Y, Xiao YY, Stoleru GL, Theos AC. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration.Cell Death Dis 2017;8:e2537.
Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, LanzaR. Embryonic stem cell trials for macular degeneration: a preliminary report Lancet 2012; 379:713-720.
Schwartz S.D, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, LanzaR. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015;385:509-516.
Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR, Boles NC, HuaF, Maminishkis A, Zhang C, Blenkinsop T, Khristov V, Jha BS, Memon OS, D'Souza S, Temple S, Miller SS, BhartiK. In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl. Med 2016;5:1562-1574.
Miyagishima KJ, Wan Q, Miller SS, Bharti K. A basis for comparison: sensitive authentication of stem cell derived RPE using physiological responses of intact RPE monolayers. Stem Cell Transl Investig 2017;4.
Levi LA, Miller JW, Zack DJ, Friedlander M, Smith LEH. Special commentary: early clinical development of cell replacement therapy: considerations for the national eye institute audacious goals initiative. Ophthalmology2017;124:926-934.
Zarbin M. Cell-based therapy for degenerative retinal disease.Trends Mol Med2016;22:115-134.
Park S, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, NoltaJ. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings.Investig Ophthalmol Vis Sci2014;56:81-89.
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction.Prog Retin Eye Res2017;56:148-165.
European Medicines Agency. Advanced therapy medicinal products: Overview. www.ema.europa.eu/en/human-regulatory/overview/advanced-therapy-medicinal-products-overview. Entry: 02.07.2020.
Kuriyan AE, Albini TA, Townsend JH, et al. Vision Loss after Intravitreal Injection of Autologous "Stem Cells" for AMD. N Engl J Med. 2017;376(11):1047‐1053. DOI:10.1056/NEJMoa1609583.
Machalińska A, Kłos P, Baumert B et al. Stem cells are mobilized from the bone marrow into the peripheral circulation in response to retinal pigment epithelium damage – a pathophysiological attempt to induce endogenousregeneration. Curr Eye Res 2011;36(7): 663-72.
Machalińska A, Rogińska D, Pius-Sadowska E et al. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitrealinjection in a mouse model of acute retinal injury. Stem Cells Int 2015;2015: 620364.
Boudreault K, Justus S, Lee W et al. Complication of Autologous Stem Cell Transplantation in Retinitis Pigmentosa. JAMA Ophthalmol 2016;134(6): 711-2.
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 477
Number of citations: 0