Role of the gut microbiota in human health
DOI:
https://doi.org/10.12775/JEHS.2020.10.08.056Keywords
gut microbiota, health, probiotics, microorganismsAbstract
Introduction: The human gut microbiota has become the subject of extensive research in recent years and the knowledge of the species inhabiting the gut is growing rapidly. Microbiota plays an important role in human health and diseases. It takes part in obtaining and storing energy, as well as in metabolic functions.
The aim of the study: The purpose of the study is to collect and review scientific publications about the impact of gut microbiota on human health.
Material and method: The paper uses standard criteria as the research method. The articles used to create the reviews were published on the PubMed and Google Scholar platforms.
Description of the state of knowledge: Numerous studies suggest that composition of intestinal microbiota has impact on the long-term functioning of the human organism. Depressive disorders appear to be associated with changes in the microbiota. In depressed patients, fewer bacteria of the type Bacteroidetes and higher level of Alistipes are found. A few studies have demonstrated a link between gut microbial signatures and hypertension. Studies have shown that T2DM patients may have an altered composition of gut microbiota, mainly a decreased Bacteroidetes/ Firmicutes ratio and decrease in some functional bacteria when compared to healthy people. Intestinal microorganisms are also a key element in the proper functioning of the immune system by influencing the maturation process of the immune system's cells.
Summary: To sum up, numerous studies indicate that abnormal composition of the intestinal microflora is the cause of not only faster development of metabolic syndrome, but also other diseases. It influences the development of circulatory, nervous or immune system diseases. Its abnormal composition is influenced by many factors such as diet, lifestyle or antibiotic therapy.
References
Valdes A, Walter J, Segal E, Tim D. Role of the gut microbiota in nutrition and health. Science and Politics of Nutrition. BMJ 2018;361:k2179.
Clemente J, Ursell L, Wegener Parfrey L, Knight R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Volume 148, Issue 6, 16 March 2012, Pages 1258-1270.
Flint H, Scott K, Louis P, Duncan S. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology volume 9, pages577–589(2012).
Boulangé C, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016; 8: 42.
Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014 Nov 21; 20(43): 16079–16094.
Puska P, Norrving B (2011). Global Atlas on Cardiovascular Disease Prevention and Control World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. pp. 3–18.
Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016.
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL „Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.” Nat Med. 2013 May; 19(5):576-85.
Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., DuGar, B., … Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63.
Al-Waiz M, Mikov M, Mitchell SC, Smith RC. The exogenous origin of trimethylamine in the mouse. Metabolism. 1992; 41:135–136.
Peng, J., Xiao, X., Hu, M., & Zhang, X. (2018). Interaction between gut microbiome and cardiovascular disease. Life Sciences.
Wu ZX, Li SF, Chen H, Song JX, Gao YF, Zhang F, et al. The changes of gut microbiotaafter acute myocardial infarction in rats. PloS one. 2017.
Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, et al. Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arteriosclerosis, thrombosis, and vascular biology. 2018.
Suzuki T, Heaney LM, Jones DJ, Ng LL. Trimethylamine N-oxide and Risk after Acute Myocardial Infarction. Clinical chemistry. 2017 63:420-8.
Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, et al. Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. J Am Heart Assoc. 2016.
Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the Gut Microbiome in Hypertension. Frontiers in cellular and infection microbiology. 2017.
Ufnal M, Jazwiec R, Dadlez M, Drapala A,Sikora M, Skrzypecki J. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. The Canadian journal of cardiology. 2014.
Nagatomo Y, Tang WH. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. Journal of cardiac failure. 2015.
Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. Journal of the American College of Cardiology. 2014.
Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Frontiers in physiology. 2017.
Zhang H, Meng J, Yu H. Trimethylamine N-oxide Supplementation Abolishes the Cardioprotective Effects of Voluntary Exercise in Mice Fed a Western Diet. Frontiers in physiology. 2017.
Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009; 136(6).
Evrensel A, Ceylan ME. The gut-brain axis: The missing link in depression. Clin. Psychopharmacol. Neurosci. 2015; 13(3): 239–244.
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut axis. Behav. Brain Res. 2015; 277: 32–48.
Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology. 2007; 132(6):2116–2130.
Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014; 20(9): 509–518.
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 2012; 113(2): 411–417.
Kimura I, Ozawa K, Inoune D, Imamura T, Kimura K, Maeda T i wsp. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013; 4: 1829.
Perez-Burgos A, Wang B, Mao YK, Mistry B, McVey Neufeld KA, Bienenstock J i wsp. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 2013; 304(2): G211–G220.
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Ther. 2015; 37(5): 984–995.
Chrobak AA, Nowakowski J, Dudek D. Interactions between the gut microbiome and the central nervous system and their role in schizophrenia, bipolar disorder and depression. Archives of Psychiatry and Psychotherapy, 2016; 2: 5–11.
Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012; 37(9): 1369–1378.
Dinan TG, Cryan JF. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol. Motil. 2013; 25(9): 713–719.
Musso G, Gambino R, Cassader M. Obesity, diabetes and gut microbiota: The hygiene hypothesis expanded? Diabetes Care. 2010; 33(10): 2277–2284.
Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Posmayer F, Liu S i wsp. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: Further development of a rodent model of autism spectrum disorders. J. Neuroinflammation. 2012; 9: 153.
Louis P. Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig. Dis. Sci. 2012; 57(8): 1987–1989.
Critchfield JW, Hemert van S, Ash M, Mulder L, Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract. 2011;161358.
Dash S, Clarke G, Berk M, Jacka FN. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psych. 2015; 28(1): 1–6.
Fremont M, Coomans D, Massart S, De Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe. 2013; 22: 50–56.
Fond G, Loundou A, Hamdani N, Boukouaci W, Dargel A, Oliveira J i wsp. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and metaanalysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014; 264(8): 651–660.
Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM i wsp. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009; 1(1): 6.
L. V. Kalia i A. E. Lang, „Parkinson’s disease”, Lancet Lond. Engl., t. 386, nr 9996, s. 896–912, sie. 2015.
D. W. Dickson i in., „Neuropathology of non-motor features of Parkinson disease”, Parkinsonism Relat. Disord., t. 15, s. S1–S5, grudz. 2009.
H. Braak, R. A. I. de Vos, J. Bohl, i K. Del Tredici, „Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology”, Neurosci. Lett., t. 396, nr 1, s. 67–72, mar. 2006.
K. Kieburtz i K. B. Wunderle, „Parkinson’s disease: Evidence for environmental risk factors”, Mov. Disord., t. 28, nr 1, s. 8–13, 2013.
R. Savica i in., „Medical records documentation of constipation preceding Parkinson disease”, Neurology, t. 73, nr 21, s. 1752–1758, lis. 2009.
K. M. Shannon, A. Keshavarzian, H. B. Dodiya, S. Jakate, i J. H. Kordower, „Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s Disease? Evidence from 3 cases”, Mov. Disord., t. 27, nr 6, s. 716–719, 2012.
F. Scheperjans i in., „Gut microbiota are related to Parkinson’s disease and clinical phenotype”, Mov. Disord., t. 30, nr 3, s. 350–358, 2015.
C. B. Forsyth i in., „Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson’s Disease”, PLOS ONE, t. 6, nr 12, s. e28032, grudz. 2011.
S. Roy Sarkar i S. Banerjee, „Gut microbiota in neurodegenerative disorders”, J. Neuroimmunol., t. 328, s. 98–104, 15 2019.
I. Rite, A. Machado, J. Cano, i J. L. Venero, „Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons”, J. Neurochem., t. 101, nr 6, s. 1567–1582, 2007.
A. Keshavarzian i in., „Colonic bacterial composition in Parkinson’s disease”, Mov. Disord., t. 30, nr 10, s. 1351–1360, 2015.
A. Pompei, L. Cordisco, A. Amaretti, S. Zanoni, D. Matteuzzi, i M. Rossi, „Folate Production by Bifidobacteria as a Potential Probiotic Property”, Appl. Environ. Microbiol., t. 73, nr 1, s. 179–185, sty. 2007.
S. N. Surwase i J. P. Jadhav, „Bioconversion of l-tyrosine to l-DOPA by a novel bacterium Bacillus sp. JPJ”, Amino Acids, t. 41, nr 2, s. 495–506, lip. 2011.
J. Weller i A. Budson, „Current understanding of Alzheimer’s disease diagnosis and treatment”, F1000Research, t. 7, lip. 2018.
J. M. Hill, C. Clement, A. I. Pogue, S. Bhattacharjee, Y. Zhao, i W. J. Lukiw, „Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD)”, Front. Aging Neurosci., t. 6, cze. 2014.
N. M. Vogt i in., „Gut microbiome alterations in Alzheimer’s disease”, Sci. Rep., t. 7, nr 1, Art. nr 1, paź. 2017.
M. Elahy i in., „Blood–brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment”, Immun. Ageing, t. 12, nr 1, s. 2, mar. 2015.
F. Pistollato, S. Sumalla Cano, I. Elio, M. Masias Vergara, F. Giampieri, i M. Battino, „Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease”, Nutr. Rev., t. 74, nr 10, s. 624–634, paź. 2016.
D. Ulluwishewa, R. C. Anderson, W. C. McNabb, P. J. Moughan, J. M. Wells, i N. C. Roy, „Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components”, J. Nutr., t. 141, nr 5, s. 769–776, maj 2011.
O. Karlsson, E. Roman, A.-L. Berg, i E. B. Brittebo, „Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (β-N-methylamino-l-alanine) during the neonatal period”, Behav. Brain Res., t. 219, nr 2, s. 310–320, cze. 2011.
A. Asti i L. Gioglio, „Can a Bacterial Endotoxin be a Key Factor in the Kinetics of Amyloid Fibril Formation?”, J. Alzheimers Dis., t. 39, nr 1, s. 169–179, sty. 2014.
W. J. Lukiw, „Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease”, Front. Microbiol., t. 7, 2016.
E. Akbari i in., „Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial”, Front. Aging Neurosci., t. 8, 2016.
A. C. Ouwehand i in., „Bifidobacterium microbiota and parameters of immune function in elderly subjects”, FEMS Immunol. Med. Microbiol., t. 53, nr 1, s. 18–25, cze. 2008.
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014;383:69–82.
Jamshidi P, Hasanzadeh S, Tahvildari A, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog. 2019;11:49.
Han H, Li Y, Fang J, et al. Gut Microbiota and Type 1 Diabetes. Int J Mol Sci. 2018;19(4):995.
Belkaid Y, Hand T. Role of the Microbiota in Immunity and inflammation. Cell. 2014 Mar 27; 157(1): 121–141.
Cole D, Bulek A, Dolton G, Schauenberg A, Szomolay B, Rittase W, et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest. 2016 Jun 1; 126(6): 2191–2204.
Leiva-Gea I, Sanchez-Alcoholado L, Martin-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case–control study. Diabetes Care. 2018;41(11):2385–95.
Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286-300.
Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726-735.
Woldeamlak B, Yirdaw K, Biadgo B. Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. Korean J Gastroenterol. 2019;74(6):314-320.
Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, diagnosis and classification of diabetes mellitus. [Internet]. Geneva: World Health Organization; c1999 [cited 2020 Aug 18].
Sircana A, Framarin L, Leone N, et al. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence?. Curr Diab Rep. 2018;18(10):98.
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.
Salgaço M, Oliveira L, Costa G, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol. 2019;103(23-24):9229-9238.
Delzenne NM, Cani PD. Gut microbiota and the pathogenesis of insulin resistance. Curr Diab Rep. 2011;11(3):154-159. doi:10.1007/s11892-011-0191-1
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 703
Number of citations: 0