Adipose tissue and its proinflammatory properties
DOI:
https://doi.org/10.12775/JEHS.2020.10.08.016Keywords
adipose tissue, immunology, inflammationAbstract
For many years, adipose tissue was considered only as an energy store, additionally having an insulating and protective function against injuries. The discovery of the ob gene more than 20 years ago meant that adipose tissue is now seen as an endocrine gland regulating / modulating the body's energy metabolism, inflammatory and immune processes thanks to the secretion of bioactive molecules such as adipokines, enzymes, hormones and growth factors. The substances secreted by adipose tissue with a pro-inflammatory effect include, among others leptin, resistin, tumor necrosis factor, lipocalin 2, angiopoietin-like protein, interleukin-6, interleukin-18, visfatin, monocyte chemotactic factor 1, chemerin or a plasminogen activator inhibitor.
References
Myrda K, Rozentryt P, Nowak J, Niedziela J, Kawecka E, Poloński L. Tkanka tłuszczowa w niewydolności serca - wróg czy przyjaciel? Folia Cardiol. 2010;5:232–41.
Murawska-Ciałowicz E. Tkanka tłuszczowa-charakterystyka morfologiczna i biochemiczna różnych depozytów. Postep. Hig Med Dosw. 2017;71:466–84.
Matulewicz N, Karczewska-Kupczewska M. Insulinooporność a przewlekła reakcja zapalna. Postep. Hig Med Dosw. 2016;70:1245–57.
Sieminska L. Tkanka tluszczowa. Patofizjologia, rozmieszczenie, róznice plciowe oraz znaczenie w procesach zapalnych i nowotworowych. Endokrynol. Pol. 2007;58:330–42.
Heaton JM. The distribution of brown adipose tissue in the human. J. Anat. 1972;112:35–9.
Gonzalez-Barroso MDM, Ricquier D, Cassard-Doulcier A-M. The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes. Rev. 2000;1:61–72.
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. N. Engl. J. Med. 2009;360:1509–17.
Wójcik B, Górski J. Brunatna tkanka tłuszczowa u dorosłego człowieka: występowanie i funkcja. Endokrynol. Otyłość i Zaburzenia Przemiany Mater. 2011;7:34–40.
Stosio M, Witkowicz A, Kowalska A, Karabon L. Genetic background of aberrant thermogenin expression (UCP1) in obesity leading to metabolic syndrome. Postepy Hig. Med. Dosw. (Online). 2016;70:1389–403.
Mazur A, Matusik P, Małecka-Tendera E. Tkanka tłuszczowa jako narza̧d wydzielania wewnȩtrznego. Pediatr. Pol. 2010;85:255–64.
Góralska M, Majewska-Szczepanik M, Szczepanik M. Mechanizmy immunologiczne towarzyszące otyłości i ich rola w zaburzeniach metabolizmu. Postepy Hig. Med. Dosw. 2015;69:1384–404.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.
Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: A basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 2008;100:227–35.
Bouwman JJM, Visseren FLJ, Bouter KP, Diepersloot RJA. Infection-induced inflammatory response of adipocytes in vitro. Int. J. Obes. 2008;32:892–901.
Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Magdalena Olszanecka-Glinianowicz DNM, Patofi Zjologii Śląskiego K. Otyłość jako choroba zapalna Obesity as infl ammatory disease Word count. 2008:62.
Xu H, Hirosumi J, Uysal KT, Guler AD, Hotamisligil GS. Exclusive Action of Transmembrane TNFα in Adipose Tissue Leads to Reduced Adipose Mass and Local But Not Systemic Insulin Resistance. Endocrinology. 2002;143:1502–11.
Reaven G, Abbasi F, McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog. Horm. Res. 2004;59:207–23.
Chacińska M, Zabielski P, Grycel S, Błachnio-zabielska A. Udział kwasów tłuszczowych i tkanki tłuszczowej w indukowaniu insulinooporności mięśni szkieletowych. Postep. Hig Med Dosw. 2016:1142–9.
Dyaczyński M, Scanes CG, Koziec H, Pierzchała-Koziec K. Endocrine implications of obesity and bariatric surgery. Endokrynol. Pol. 2018;69:574–86.
Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, MacIver NJ. Leptin Metabolically Licenses T Cells for Activation To Link Nutrition and Immunity. J. Immunol. 2014;192:136–44.
Kazimierczak-Kabzińska A, Kajdaniuk D, Siemińska L, Nowak M, Głogowska-Szeląg J, Borgiel-Marek H et al. Selected adipose tissue hormones in the blood of patients with ischaemic cerebral stroke. Endokrynol. Pol. 2020;71:21–6.
Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB et al. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes. 2004;53:1671–9.
Borsuk A, Biernat W, Zięba D. Multidirectional action of resistin in the organism. Postepy Hig. Med. Dosw. 2018;72:327–38.
Pęczek K, Nowicki M. Diagnostyka różnicowa ostrego uszkodzenia nerek. Varia Medica. 2017;1:57–64.
Wang Y, Lam KSLL, Kraegen EW, Sweeney G, Zhang J, Tso AW et al. Lipocalin-2 Is an Inflammatory Marker Closely Associated with Obesity, Insulin Resistance, and Hyperglycemia in Humans. Clin. Chem. 2007;53:34–41.
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol. Metab. 2017;28:388–97.
Law IKM, Xu A, Lam KSL, Berger T, Mak TW, Vanhoutte PM et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes. 2010;59:872–82.
Thorin-Trescases N, Thorin E. High Circulating Levels of ANGPTL2: Beyond a Clinical Marker of Systemic Inflammation. 2017. doi:10.1155/2017/1096385.
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011;11:85–97.
Niedźwiedzka-Rystwej P, Trzeciak-Ryczek A, Deptuła W. Tkanka tłuszczowa i jej rola w odporności - nowe dane. Alerg. Astma Immunol. 2012;17:16–21.
Gellen B, Thorin-Trescases N, Sosner P, Gand E, Saulnier PJ, Ragot S et al. ANGPTL2 is associated with an increased risk of cardiovascular events and death in diabetic patients. Diabetologia. 2016;59:2321–30.
Mooney RA, Senn J, Cameron S, Boivin LM, Shang Y, Furlanetto RW. Suppressors of Cytokine Signaling-1 and-6 Associate with and Inhibit the Insulin Receptor A POTENTIAL MECHANISM FOR CYTOKINE-MEDIATED INSULIN RESISTANCE*. ASBMB. 2001. doi:10.1074/jbc.M010579200.
Ueki K, Kondo T, Kahn CR. Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Mol. Cell. Biol. 2004;24:5434–46.
Rieusset J, Bouzakri K, Chevillotte E, Ricard N, Jacquet D, Bastard JP et al. Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes. 2004;53:2232–41.
Wajchenberg BL. Subcutaneous and Visceral Adipose Tissue: Their Relation to the Metabolic Syndrome. Endocr. Rev. 2000;21:697–738.
Zahorska-Markiewicz B, Olszanecka-Glinianowicz M, Janowska J, Kocełak P, Semik-Grabarczyk E, Holecki M et al. Serum concentration of visfatin in obese women. Metabolism. 2007;56:1131–4.
Lu LF, Wang CP, Yu TH, Hung WC, Chiu CA, Chung FM et al. Interpretation of elevated plasma visfatin concentrations in patients with ST-elevation myocardial infarction. Cytokine. 2012;57:74–80.
Ilhan N, Susam S, Canpolat O, Belhan O. The emerging role of leptin, Adiponectin and Visfatin in Ischemic/Hemorrhagic stroke. Br. J. Neurosurg. 2019;33:504–7.
Kadoglou NPE, Fotiadis G, Lambadiari V, Maratou E, Dimitriadis G, Liapis CD. Serum levels of novel adipokines in patients with acute ischemic stroke: Potential contribution to diagnosis and prognosis. Peptides. 2014;57:12–6.
Pitoulias MG, Skoura L, Pitoulias AG, Chatzidimitriou D, Margariti A, Arsenakis M et al. The role of Visfatin in atherosclerotic peripheral arterial obstructive disease. Cytokine. 2017;91:140–4.
Chipitsyna G, Gong Q, Gray CF, Haroon Y, Kamer E, Arafat HA. Induction of monocyte chemoattractant protein-1 expression by angiotensin II in the pancreatic islets and β-cells. Endocrinology. 2007;148:2198–208.
Tan H wei, Liu X, Bi X ping, Xing S shan, Li L, Gong H ping et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis. 2010;208:350–7.
Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 2003;59:234–40.
Netea MG, Joosten LAB, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 2006;12:650–6.
Stojek M. Chemeryna – rola w patologii człowieka The role of chemerin in human disease. 2017:110–7.
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 579
Number of citations: 0