Influence of diet on the gut microbiota
DOI:
https://doi.org/10.12775/JEHS.2020.10.05.003Keywords
microbiota, gut, diet, gluten-free-diet, ketogenic-dietAbstract
Introduction: Gut microbiota is still a new direction in medicine. The intestinal microbiota contains up to 100 trillion bacteria and around 1000 species. The composition of the intestinal microflora may be affected by external factors, among which eating habits can be considered as one of the most important. There are evidences how gut microbiota may affect the course of diseases, such as autism spectrium disorders, mood disorders, celiac disease, irritable bowel syndrome, diabetes and colorectal cancer
The aim of the study: The purpose of this systemic review was to collect and analyse current and new informations on the effect of diet on intestinal microbiota.
Material and method: Standard criteria were used to review the literature data. The search of articles in the PubMed database was carried out using the following keywords: microbiota, gut, diet, gluten-free-diet, ketogenic-diet.
Description of the state of knowledge: There are many studies that show the effect of diet on the intestinal microflora. Changing the amount of plant fiber consumed, ketogenic diet, gluten-free diet can affect the composition of the intestinal microflora in various ways, as shown by the evidence presented by us. For instance ketogenic diet in patients with refractory epilepsy may reduce the symptoms of the disease, which is associated with changes in the composition of gut microbiota.
Summary: Diet is a promising direction of development, due to being a factor which may improve the course of many diseases. However, despite the fact that many new studies have appeared in this field in the last decade, time is still needed to draw specific conclusions.
References
Dong LN, Wang M, Guo J, Wang JP. Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl). 2019 132(13) 1610–1614. doi:10.1097/CM9.0000000000000290
da Silva ST, dos Santos CA, Bressan J. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutr Hosp. 2013 28(4) 1039-1048.
Eckburg PB, Lepp PW, Relman DA. Archaea and their potential role in human disease. Infect Immun. 2003 71 591–596.
Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003 185 6220–6223.
Goubet AG, Daillère R, Routy B, Derosa L, M Roberti P, Zitvogel L. The impact of the intestinal microbiota in therapeutic responses against cancer. C R Biol. 2018 341(5) 284-289. doi: 10.1016/j.crvi.2018.03.004.
AM Mowat, WW Agace. Regional specialization within the intestinal immune system. Nat. Rev. Immunol., 2014 14(10) 667-685
Hayes CL, Dong J, Galipeau HJ, Jury J, McCarville J, et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. 2018 8(1) 14184. doi:10.1038/s41598-018-32366-6
Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N, Dickerson F, Macgregor A, Boyer L, Dargel A, et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol Biol (Paris) 2015 63 35–42.
Zhou L, Foster JA. Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat. 2015 11 715–723.
Vindigni SM, Zisman TL, Suskind DL, Damman CJ.
The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv. Gastroenterol. 2016 9 606–625.
The Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012 486 207.
Eckburg PB, Lepp PW, Relman DA. Archaea and their potential role in human disease. Infect Immun. 2003 71 591–596.
Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016 22(1) 361–368. doi:10.3748/wjg.v22.i1.361
Hughes HK, Rose D, Ashwood P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr Neurol Neurosci Rep. 2018 18(11) 81. doi:10.1007/s11910-018-0887-6
van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain Axis: modulator of host metabolism and appetite. J Nutr. 2017 147(5) 727–45.
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009 6(5) 306–314. doi:10.1038/nrgastro.2009.35
Zhao L, Xiong Q, Stary CM, Mahgoub OK, Ye Y, et al. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. J Neuroinflammation. 2018 15(1) 339. doi:10.1186/s12974-018-1382-3
Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009 6(5) 306–314. doi:10.1038/nrgastro.2009.35
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011 23(3) 255–64 e119.
Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011 108(7) 3047–52.
Matthews DM, Jenks SM. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Process. 2013 96 27–35.
O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009 65(3) 263–7.
Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013 18(6) 666–73.
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011 23 e119 10.1111/j.1365-2982.2010.01620.x
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol. 2016 7 1934. doi:10.3389/fmicb.2016.01934
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012 113(2) 411–7.
Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011 33(8) 574–81.
Ge X, Pan J, Liu Y, Wang H, Zhou W, et al. Intestinal Crosstalk between Microbiota and Serotonin and its Impact on Gut Motility. Curr Pharm Biotechnol. 2018 19(3) 190-195. doi: 10.2174/1389201019666180528094202.
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell. 2018 9(5) 474–487. doi:10.1007/s13238-018-0543-6
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014 156 84-96. http://dx.doi.org/10.1016/j.cell.2013.12.016
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016 534(7606) 213–217. doi:10.1038/nature18309
Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014 5:3611. doi:10.1038/ncomms4611
Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018 13n23(6) 705-715. doi: 10.1016/j.chom.2018.05.012.
Codex Alimentarius Committee Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission. Rome, Italy: FAO. 2010.
Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017 8(2) 172–184. doi:10.1080/19490976.2017.1290756
David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, et al. Host lifestyle affects human microbiota on daily timescales [published correction appears in Genome Biol. 2016 17(1) 117]. Genome Biol. 2014 15(7) R89. doi:10.1186/gb-2014-15-7-r89
Ohgaki H, Matsukura N, Morino K, Kawachi T, Sugimura T, Takayama S. Carcinogenicity in mice of mutagenic compounds from glutamic acid and soybean globulin pyrolysates. Carcinogenesis. 1984 5(6) 815-9.
Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008 3(4) 213–223. doi:10.1016/j.chom.2008.02.015
Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012 66(1) 53-60. doi: 10.1038/ejcn.2011.141.
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010 107(33) 14691–14696. doi:10.1073/pnas.1005963107
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 54(9) 2325–2340. doi:10.1194/jlr.R036012
Marsono Y, Illman RJ, Clarke JM, Trimble RP, Topping DL. Plasma lipids and large bowel volatile fatty acids in pigs fed on white rice, brown rice and rice bran. Br J Nutr. 1993 70(2) 503-13.
Bird AR, Hayakawa T, Marsono Y, Gooden JM, Record IR, et al. Coarse brown rice increases fecal and large bowel short-chain fatty acids and starch but lowers calcium in the large bowel of pigs. J Nutr. 2000 130(7) 1780-7.
Perez-Guisado J. Ketogenic diets: Additional benefits to the weight loss and unfounded secondary effects. Arch. Lat. Nutr. 2008 58 323–329.
Veech R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fat. Acids. 2004 70 309–319. doi: 10.1016/j.plefa.2003.09.007.
Fukao T., Lopaschuk G.D., Mitchell G.A. Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fat. Acids. 2004 70 243–251. doi: 10.1016/j.plefa.2003.11.001.
Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic Diet and Microbiota: Friends or Enemies?. Genes (Basel). 2019 10(7) 534. doi:10.3390/genes10070534
Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018 8(1) 6670. doi:10.1038/s41598-018-25190-5
Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol. 2017 23(33) 6164–6171. doi:10.3748/wjg.v23.i33.6164
Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018 145 163–168. doi: 10.1016/j.eplepsyres.2018.06.015.
Nistal E, Caminero A, Herrán AR, Arias L, Vivas S, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: Effect of age, gluten diet, and disease. Inflamm. Bowel Dis. 2012 18 649–656. doi: 10.1002/ibd.21830.
Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011 11 219. Published 2011 Oct 4. doi:10.1186/1471-2180-11-219
Di Cagno R, Rizzello CG, Gagliardi F, Ndagijimana M, Vernocchi P, et al. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol. 2009 75(12) 3963–3971. doi:10.1128/AEM.02793-08
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 659
Number of citations: 0