The impact of certain factors on complications development in patients with multiple long bone fractures of lower extremities and severe associated trauma
DOI:
https://doi.org/10.12775/JEHS.2020.10.04.035Keywords
polytrauma, long bone fractures, definitive osteosynthesis, complication, outcomesAbstract
The aim: to determine the influence of individual factors on the development of complications in patients with polytrauma and multiple long bone fractures of lower extremities.
Materials and methods: a prospective study conducted inKyivCityClinicalHospital №17 from December 2016 to January 2020. The study included 57 patients with polytrauma and multiple long bone fractures of lower extremities, treated according to the proposed algorithm.
Results: the most common complications were: pneumonia (21.1%), acute respiratory distress syndrome (ARDS) (15.8%), multiple organ failure (MOF) (15.8%), sepsis (8.8%), mortality (12.3%). A number of factors influenced the development of complications in patients with multiple long bone fractures of lower extremities and polytrauma were identified and the correlation analysis was conducted. These factors included: age; sex; the Injury Severity Score (ISS); the Glasgow Coma Scale (GCS); the severity of a general condition of a patient according to the Clinical Grading Scale (CGS); trauma to the head, and neck, chest, abdomen, pelvis; head and neck, chest, abdomen, pelvis trauma in accordance with the Abbreviated Injury Scale (AIS); the number of segments of damaged limbs; Gustilo-Anderson fracture type; blood loss volume; massive blood transfusions; respiratory index; duration of mechanical ventilation (MV); treatment tactics; osteosynthesis method; conversion phasing.
Conclusion: the analysis allowed to identify the most significant factors that lead to complications in patients with multiple long bone fractures of lower extremities and polytrauma. Informative parameters were:
− for pneumonia: GCS and CGS; chest injury; AIS head and neck, chest ≥ 4; duration of MV; treatment tactics; conversion phasing (IC = 1.0-2.1).
− for ARDS: GCS and CGS; AIS chest ≥ 4; fractures > 2 long bones; blood loss volume; massive blood transfusions; respiratory index; duration of MV; treatment tactics (IC = 1.2-4.6).
− for sepsis: GCS; trauma to the chest, abdomen; AIS head and neck, abdominal cavity ≥ 4; fractures > 2 long bones; conversion phasing (IC = 1.1-3.2).
− for MOF: GCS and CGS; abdominal trauma; AIS abdominal cavity ≥ 4; fractures > 2 long bones; massive blood transfusions; conversion phasing (IC = 1.2-2.2).
− for mortality: age, ISS, GCS and CGS; abdominal trauma; AIS head and neck; chest, abdomen, pelvis ≥ 4; blood loss volume; massive blood transfusions; duration of MV (IC = 1,1-5,9).
Among the factors there were those for which the diagnostic and treatment process:
− affected: the choice of treatment tactics (IC = 1,1-1,3); use of massive blood transfusions (IC = 1.8-4.8); duration of MV (IC = 1,2-2,1); conversion of the fixation method (IC = 1.2-1.8).
− did not affect: GCS (IC = 1,2-3,1), CGS (IC = 1,1-1,3), AIS (IC = 1,0-6,2).
References
WHO, The top 10 causes of death 24 May 2018 https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death
WHO, Global Health Observatory (GHO) data. https://www.who.int/gho/mortality_burden_disease/en/
Liu, X. Y., Jiang, M., Yi, C. L., Bai, X. J., & Hak, D. J. (2016). Early intramedullary nailing for femoral fractures in patients with severe thoracic trauma: A systemic review and meta-analysis. Chinese journal of traumatology = Zhonghua chuang shang za zhi, 19(3), 160–163. https://doi.org/10.1016/j.cjtee.2016.04.001
Nahm, N. J., & Vallier, H. A. (2012). Timing of definitive treatment of femoral shaft fractures in patients with multiple injuries: a systematic review of randomized and nonrandomized trials. The journal of trauma and acute care surgery, 73(5), 1046–1063. https://doi.org/10.1097/TA.0b013e3182701ded
Cantu, R. V., Graves, S. C., & Spratt, K. F. (2014). In-hospital mortality from femoral shaft fracture depends on the initial delay to fracture fixation and Injury Severity Score: a retrospective cohort study from the NTDB 2002-2006. The journal of trauma and acute care surgery, 76(6), 1433–1440. https://doi.org/10.1097/TA.0000000000000230
Blokhuis, T. J., Pape, H. C., & Frölke, J. P. (2017). Timing of definitive fixation of major long bone fractures: Can fat embolism syndrome be prevented?. Injury, 48 Suppl 1, S3–S6. https://doi.org/10.1016/j.injury.2017.04.015
Banerjee, M., Bouillon, B., Shafizadeh, S., Paffrath, T., Lefering, R., Wafaisade, A., & German Trauma Registry Group (2013). Epidemiology of extremity injuries in multiple trauma patients. Injury, 44(8), 1015–1021. https://doi.org/10.1016/j.injury.2012.12.007
Pfeifer, R., Rixen, D., Husebye, E. E., Pardini, D., Müller, M., Dumont, C., Oestern, H. G., Giannoudis, P., Pape, H. C., & EPOFF study group (2012). Do stable multiply injured patients with bilateral femur fractures have higher complication rates? An investigation by the EPOFF study group. European journal of trauma and emergency surgery : official publication of the European Trauma Society, 38(2), 185–190. https://doi.org/10.1007/s00068-011-0147-9
Kobbe, P., Micansky, F., Lichte, P., Sellei, R. M., Pfeifer, R., Dombroski, D., Lefering, R., Pape, H. C., & TraumaRegister DGU (2013). Increased morbidity and mortality after bilateral femoral shaft fractures: myth or reality in the era of damage control?. Injury, 44(2), 221–225. https://doi.org/10.1016/j.injury.2012.09.011
Nahm, N. J., Moore, T. A., & Vallier, H. A. (2014). Use of two grading systems in determining risks associated with timing of fracture fixation. The journal of trauma and acute care surgery, 77(2), 268–279. https://doi.org/10.1097/TA.0000000000000283
Lichte, P., Weber, C., Sellei, R. M., Hildebrand, F., Lefering, R., Pape, H. C., Kobbe, P., & TraumaRegister DGU (2014). Are bilateral tibial shaft fractures associated with an increased risk for adverse outcome?. Injury, 45(12), 1985–1989. https://doi.org/10.1016/j.injury.2014.10.005
Pape, H. C., Lefering, R., Butcher, N., Peitzman, A., Leenen, L., Marzi, I., Lichte, P., Josten, C., Bouillon, B., Schmucker, U., Stahel, P., Giannoudis, P., & Balogh, Z. (2014). The definition of polytrauma revisited: An international consensus process and proposal of the new 'Berlin definition'. The journal of trauma and acute care surgery, 77(5), 780–786. https://doi.org/10.1097/TA.0000000000000453.
Lyanskorunsky, VM, Dubrov, SO, Buryanov, OA, Myasnikov, DV (2020). The influence of the choice of treatment tactics on patients with polytrauma and multiple fractures of the long bones of the lower extremities on the development of complications. Pain, anesthesia and intensive care / Pain, anesthesia and intensive care, №2 (91), 76-86. DOI: https://doi.org/10.25284/2519-2078.2(91).2020.205603
Pape, H. C., Giannoudis, P. V., Krettek, C., & Trentz, O. (2005). Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making. Journal of orthopaedic trauma, 19(8), 551–562. https://doi.org/10.1097/01.bot.0000161712.87129.80
Rating the severity of tissue damage. I. The abbreviated scale. (1971). JAMA, 215(2), 277–280. https://doi.org/10.1001/jama.1971.03180150059012
Baker, S. P., O'Neill, B., Haddon, W., Jr, & Long, W. B. (1974). The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of trauma, 14(3), 187–196
Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet (London, England), 2(7872), 81–84. https://doi.org/10.1016/s0140-6736(74)91639-0
Meinberg, E. G., Agel, J., Roberts, C. S., Karam, M. D., & Kellam, J. F. (2018). Fracture and Dislocation Classification Compendium-2018. Journal of orthopaedic trauma, 32 Suppl 1, S1–S170. https://doi.org/10.1097/BOT.0000000000001063
Gustilo, R. B., & Anderson, J. T. (1976). Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. The Journal of bone and joint surgery. American volume, 58(4), 453–458
Schurink, C., Nieuwenhoven, C., Jacobs, J. A., Rozenberg-Arska, M., Joore, H., Buskens, E., Hoepelman, A., & Bonten, M. (2004). Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive care medicine, 30(2), 217–224. https://doi.org/10.1007/s00134-003-2018-2
ARDS Definition Task Force, Ranieri, V. M., Rubenfeld, G. D., Thompson, B. T., Ferguson, N. D., Caldwell, E., Fan, E., Camporota, L., & Slutsky, A. S. (2012). Acute respiratory distress syndrome: the Berlin Definition. JAMA, 307(23), 2526–2533. https://doi.org/10.1001/jama.2012.5669
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., & Angus, D. C. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287
Vincent, J. L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., Reinhart, C. K., Suter, P. M., & Thijs, L. G. (1996). The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive care medicine, 22(7), 707–710. https://doi.org/10.1007/bf01709751
Gurd, A. R., & Wilson, R. I. (1974). The fat embolism syndrome. The Journal of bone and joint surgery. British volume, 56B(3), 408–416
Downloads
Published
How to Cite
Issue
Section
License
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 534
Number of citations: 0