Changes in the expression of molecular genetic regulators of the functional state of endocrine cells in SHR rats
DOI:
https://doi.org/10.12775/JEHS.2024.70.69074Keywords
SHR rats, pancreas, genes, essential arterial hypertension, endocrine cellsAbstract
Essential arterial hypertension is accompanied by chronic vascular and neurohumoral stress and microcirculatory disturbances that can alter the functional state of the endocrine compartment of the pancreas and promote its remodelling. The molecular mechanisms underlying these changes under conditions of hereditary hypertension remain insufficiently defined, particularly with respect to the involvement of vasoactive, inflammatory, and hypoxia-associated gene networks. In this context, SHR rats represent a relevant model of hereditary hypertension for a systematic assessment of expression changes in key hypertension-related genes in pancreatic tissue.
The aim of the work: to determine changes in the expression of key molecular and genetic regulators that characterise the functional state of pancreatic endocrine cells in SHR rats under conditions of hereditary hypertension.
Materials and methods. For the analysis of gene expression, the real-time reverse transcription polymerase chain reaction method was used using the PARN-037Z RT² Profiler™ PCR Array Rat Hypertension (QIAGEN, Germany), where the pancreas was the object of the study in experimental animals.
Results. In SHR rats, pancreatic tissue showed a coordinated increase in the expression of neurohumoral and vasoactive genes, including Ren (8.87-fold), Agtr2 (4.96-fold), Ece1 (3.42-fold), Ednra (4.65-fold), and Avpr1b (8.10-fold) (2⁻ΔΔCt), indicating activation of local renin-angiotensin, endothelin, and vasopressin-related pathways. A hypoxia-associated response was evident, with Hif1a upregulated 5.37-fold. Marked dysregulation of ion handling and calcium signalling was observed (Kcnj8 2.08-fold, Kcnma1 5.16-fold, Cngb1 5.30-fold, Itpr3 3.59-fold, P2rx4 5.51-fold), accompanied by activation of cytoskeletal and contractile regulators (Mylk 3.01-fold, Mylk2 6.69-fold). Stress-related neuropeptide systems were strongly induced (Calca 6.34-fold, Nppb 196.15-fold), while arachidonic acid-related inflammatory and vasoactive pathways increased (Ptgs1 2.34-fold, Ephx2 8.80-fold) together with metabolic transport changes (Slc7a1 15.47-fold) (2⁻ΔΔCt). Collectively, these shifts support a pattern of chronic neurohumoral overload, hypoxia, ionic and metabolic dysregulation in the pancreas under hereditary hypertension.
Conclusions: 1. In SHR rats, increased expression of Ren, Agtr2, Ece1, Ednra, and Avpr1b indicates pathological activation of local neurohumoral systems (renin-angiotensin, endothelin, and vasopressin signalling), which is associated with vasoconstriction, impaired microcirculation, and reduced perfusion of the islets of Langerhans.
- Upregulation of Hif1a indicates the development of chronic tissue hypoxia in the pancreas under long-term hypertension, creating an unfavourable microenvironment and potentially reducing glucose-stimulated insulin secretion.
- Increased expression of ion channel and calcium signalling genes (Kcnj8, Kcnma1, Cngb1, Itpr3, P2rx4), together with cytoskeletal and contractile regulators (Mylk, Mylk2), reflects disorganisation of ion homeostasis and exocytosis, which may contribute to calcium overload and endocrine cell dysfunction.
- Activation of stre
- ss-related and pro-inflammatory, vasoactive pathways (Calca, Nppb, Ptgs1, Ephx2, Slc7a1) is consistent with metabolic overload and inflammatory, oxidative, and nitrosative stress, thereby amplifying the damaging effects of chronic arterial hypertension and reducing the reserve capacity of the endocrine compartment.
References
1. Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev. 2020 Dec;27(6):515-526. Epub 2020 Sep 22. doi:10.1007/s40292-020-00408-8. PMID:32964344; PMCID:PMC7661395.
2. Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 2015 Jan 8;16(1):18-31. Epub 2014 Nov 20. doi:10.1016/j.stem.2014.11.001. PMID:25465113; PMCID:PMC4289422.
3. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012 Sep 14;150(6):1223-1234. doi:10.1016/j.cell.2012.07.029. PMID:22980982; PMCID:PMC3445031.
4. Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep. 2010 Feb;12(1):5-9. Epub 2010 Feb 5. doi:10.1007/s11906-009-0083-9. PMID:20425152; PMCID:PMC2821617.
5. Iwase M, Sandler S, Carlsson PO, Hellerström C, Jansson L. The pancreatic islets in spontaneously hypertensive rats: islet blood flow and insulin production. Eur J Endocrinol. 2001 Feb;144(2):169-178. doi:10.1530/eje.0.1440169. PMID:11182754.
6. Liu M, Zhang X, Wang B, Wu Q, Li B, Li A, Zhang H, Xiu R. Functional status of microvascular vasomotion is impaired in spontaneously hypertensive rat. Sci Rep. 2017 Dec 6;7(1):17080. doi:10.1038/s41598-017-17013-w. PMID:29213078; PMCID:PMC5719042.
7. Liu M, Song X, Wang B, Li Y, Li A, Zhang J, Zhang H, Xiu R. Pancreatic microcirculation profiles in the progression of hypertension in spontaneously hypertensive rats. Am J Hypertens. 2021 Jan;34(1):100-109. Published online 2020 Oct 15. doi:10.1093/ajh/hpaa164. PMID:33057586.
8. Cheng Q, Leung PS. An update on the islet renin-angiotensin system. Peptides. 2011 May;32(5):1087-1095. Epub 2011 Mar 17. doi:10.1016/j.peptides.2011.03.003. PMID:21396973.
9. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-1108. doi:10.1038/nprot.2008.73. PMID:18546601.
10. Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res. 1998 Jul;39(1):89–105. doi:10.1016/S0008-6363(98)00076-5. PMID:9764192.
11. Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol. 2007 Apr 1;580(Pt 1):31–7. doi:10.1113/jphysiol.2006.126193. PMID:17218353. PMCID:PMC2075423.
12. Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev. 2011 Jan;91(1):1–77. doi:10.1152/physrev.00060.2009. PMID:21248162. PMCID:PMC3236687.
13. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young WS 3rd, et al. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6783–7. doi:10.1073/pnas.92.15.6783.
14. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012 Feb 3;148(3):399–408. doi:10.1016/j.cell.2012.01.021. PMID:22304911. PMCID:PMC3437543.
15. Cantley J, Grey ST, Maxwell PH, Withers DJ. The hypoxia response pathway and β-cell function. Diabetes Obes Metab. 2010 Oct;12 Suppl 2:159-67. doi: 10.1111/j.1463-1326.2010.01276.x.
16. Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium. 2014 Nov;56(5):340–61. doi:10.1016/j.ceca.2014.09.001. PMID:25239387.
17. Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab. 2017 Sep;19(Suppl 1):115–23. doi:10.1111/dom.13001. PMID:28880475.
18. Kuhn M. Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol. 2004 Mar;99(2):76–82. doi:10.1007/s00395-004-0460-0. PMID:14963665.
19. Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta. 2015 Apr;1851(4):356–65. doi:10.1016/j.bbalip.2014.07.020. PMID:25093613. PMCID:PMC4314516.
20. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007 Nov;35(Pt 5):1180–6. doi:10.1042/BST0351180. PMID:17956307.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 T. Ivanenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 0
Number of citations: 0