Determination of the molecular-genetic mechanisms of cellular plasticity and pancreatic tissue remodeling in SHR rats
DOI:
https://doi.org/10.12775/JEHS.2025.82.69071Keywords
SHR rats, pancreas, genes, essential arterial hypertension, endocrine cells, cellular plasticity, tissue remodellingAbstract
Essential arterial hypertension is accompanied by systemic neurohumoral and microcirculatory disturbances, oxidative stress, and metabolic alterations that may affect the endocrine compartment of the pancreas and promote its remodelling. A key component of these changes is endocrine cell plasticity, which is mediated by reprogramming of transcriptional networks and may contribute to the development of islet dysfunction. In spontaneously hypertensive rats, a model relevant to essential arterial hypertension, the molecular and genetic mechanisms underlying these processes remain insufficiently defined, which justifies analysing the expression profile of key genes associated with cellular plasticity and pancreatic tissue remodelling.
The aim of the work: To determine the molecular mechanisms of cellular plasticity and pancreatic remodelling under conditions of essential arterial hypertension by analysing the expression profile of key genes.
Materials and methods. For the analysis of gene expression, the real-time reverse transcription polymerase chain reaction method was used using the PARN-405Z RT² Profiler™ PCR Array Rat Stem Cell kit (QIAGEN, Germany), where the pancreas was the object of the study in experimental animals.
Results. In rats SHR, pancreatic gene expression demonstrates coordinated suppression of regulators of epigenetic and transcriptional control and endocrine cell maturity (Hdac1 12.25-fold; Foxa2 2.12-fold; Sox2 3.11-fold; Neurog2 14.37-fold; 2⁻ΔΔCt), together with reduced mitochondrial proteostasis (Hspa9 14.87-fold) and trophic fibroblast growth factor signalling (Fgfr1 11.51-fold; Fgf1 4.91-fold). Concomitant downregulation of Notch and Wnt pathway components (Dtx2 7.26-fold; Numb 4.17-fold; Axin1 3.60-fold) and adhesion and matrix-related genes (Cdh1 2.39-fold; Catna1 3.44-fold; Col2a1 2.12-fold), along with decreased cell-cycle regulators (Ccne1 9.06-fold; Ccnd2 2.47-fold), indicates microenvironmental disorganisation and limited compensatory renewal. Overall, this profile supports a mechanistic shift toward reduced regenerative reserves, metabolic vulnerability, and functional exhaustion of the endocrine compartment under chronic hypertensive stress.
Conclusions: 1. In SHR rats, the pancreatic transcriptional profile is characterised by a predominant decrease in gene expression, reflecting dysregulatory remodelling of the endocrine compartment under chronic hypertensive stress.
- Suppression of key regulators of epigenetic and transcriptional control and endocrine cell maturity (Hdac1, Foxa2, Sox2, Neurog2) is observed, which is consistent with reduced plasticity and diminished functional reserve of the endocrine compartment.
- The most pronounced shifts involve mitochondrial resilience and trophic support (Hspa9; Fgfr1, Fgf1), indicating energy and trophic insufficiency as major components of the SHR phenotype.
- Downregulation of Notch and Wnt components and adhesion and matrix-related genes (Dtx2, Numb, Axin1; Cdh1, Catna1, Col2a1), together with reduced cell-cycle reserves (Ccne1, Ccnd2), supports microenvironmental disorganisation and limited compensatory renewal, thereby favouring functional exhaustion of the endocrine compartment.
References
1. Hu FB, Stampfer MJ. Insulin resistance and hypertension: the chicken-egg question revisited. Circulation. 2005 Sep 20;112(12):1678-1680. doi:10.1161/CIRCULATIONAHA.105.568055. PMID:16172279.
2. Tagi VM, Mainieri F, Chiarelli F. Hypertension in patients with insulin resistance: etiopathogenesis and management in children. Int J Mol Sci. 2022 May 22;23(10):5814. doi:10.3390/ijms23105814. PMID:35628624; PMCID:PMC9144705.
3. Iwase M, Sandler S, Carlsson PO, Hellerström C, Jansson L. The pancreatic islets in spontaneously hypertensive rats: islet blood flow and insulin production. Eur J Endocrinol. 2001 Feb;144(2):169-178. doi:10.1530/eje.0.1440169. PMID:11182754.
4. Liu M, Zhang X, Wang B, Wu Q, Li B, Li A, Zhang H, Xiu R. Functional status of microvascular vasomotion is impaired in spontaneously hypertensive rat. Sci Rep. 2017 Dec 6;7:17080. doi:10.1038/s41598-017-17013-w. PMID:29213078; PMCID:PMC5719042.
5. Liu M, Song X, Wang B, Li Y, Li A, Zhang J, Zhang H, Xiu R. Pancreatic microcirculation profiles in the progression of hypertension in spontaneously hypertensive rats. Am J Hypertens. 2021 Jan;34(1):100-109. Published online 2020 Oct 15. doi:10.1093/ajh/hpaa164. PMID:33057586.
6. Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 2015 Jan 8;16(1):18-31. Epub 2014 Nov 20. doi:10.1016/j.stem.2014.11.001. PMID:25465113; PMCID:PMC4289422.
7. Honzawa N, Fujimoto K. The plasticity of pancreatic β-cells. Metabolites. 2021 Apr 2;11(4):218. doi:10.3390/metabo11040218. PMID:33918379; PMCID:PMC8065544.
8. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012 Sep 14;150(6):1223-1234. doi:10.1016/j.cell.2012.07.029. PMID:22980982.
9. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013 Mar 27;4:37. doi:10.3389/fendo.2013.00037. PMID:23542897; PMCID:PMC3608918.
10. Abramova TV, Kolesnyk YuM. Features of the alpha-cell population organization in pancreas of spontaneously hypertensive rats (SHR). Pathologia. 2017;14(2):124-128. doi:10.14739/2310-1237.2017.2.109249.
11. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-1108. doi:10.1038/nprot.2008.73. PMID:18546601.
12. Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes. 2002;51(8):2546–2551. doi:10.2337/diabetes.51.8.2546. PMID:12145169.
13. Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SAA, et al. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics. 2024;16(1):78. doi:10.1186/s13148-024-01692-0. PMID:38862980; PMCID:PMC11167878.
14. Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol. 2023;11:1028519. doi:10.3389/fcell.2023.1028519. PMID:36819105; PMCID:PMC9932541.
15. Kilkenny DM, Rocheleau JV. Fibroblast growth factor receptor-1 signaling in pancreatic islet beta-cells is modulated by the extracellular matrix. Mol Endocrinol. 2008;22(1):196–205. doi:10.1210/me.2007-0241. PMID:17916654; PMCID:PMC2194636.
16. Kolodziejski PA, Sassek M, Bien J, Leciejewska N, Szczepankiewicz D, Szczepaniak B, et al. FGF-1 modulates pancreatic β-cell functions/metabolism: an in vitro study. Gen Comp Endocrinol. 2020;294:113498. doi:10.1016/j.ygcen.2020.113498. PMID:32360543.
17. Li XY, Zhai WJ, Teng CB. Notch signaling in pancreatic development. Int J Mol Sci. 2016;17(1):48. doi:10.3390/ijms17010048.
18. Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, et al. Wnt pathway in pancreatic development and pathophysiology. Cells. 2023;12(4):565. doi:10.3390/cells12040565.
19. Iglesias J, Barg S, Vallois D, Lahiri S, Roger C, Yessoufou A, et al. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice. J Clin Invest. 2012;122(11):4105–4117. doi:10.1172/JCI42127.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 T. Ivanenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 0
Number of citations: 0