Use of myo-inositol in treatment of subclinical hypothyroidism
DOI:
https://doi.org/10.12775/JEHS.2026.88.68715Keywords
subclinical hypothyroidism, myo-inositol, thyroid, TSHAbstract
Introduction Myo-inositol is a widely researched compound that is prevalent in nature. Its properties have been thoroughly analyzed, and its role in transduction of hormonal signal in cells has been proven. It is an important substrate for the synthesis of phosphatidylinositol 4,5-biphosphate, which is then broken down by phospholipase C, resulting in the activation of various cellular cascades. Due to this fact, this substance has been found to have many clinical applications, such as PCOS, diabetes, fertility disorders and neurological disorders. The use of myo-inositol in the treatment of subclinical hypothyroidism has been proposed due to the fact that the TSH receptor activates the aforementioned cascade, resulting in numerous clinical studies investigating the applications of this molecule in this condition.
Aim. The aim of this study is to review the current knowledge regarding the impact of myo-inositol supplementation on subclinical hypothyroidism.
Materials and methods. A search of PubMed and Google Scholar was carried out. Only studies concerning the use of myo-inositol on subclinical hypothyroidism were included, while studies investigating only overt hypothyroidism, euthyroidism, or other illnesses without subclinical hypothyroidism were excluded.
Results. All of the studies discussed in this review show that supplementation with myo-inositol helps to reduce TSH levels, anti-thyroid peroxidase antibodies (TPOAb), anti-thyroglobulin antibodies (TgAb), and improves the overall health of patients, while being a relatively safe compound with only a few negligible side effects.
Conclusion. Myo-inositol is a safe and reliable compound that can be used in the treatment of subclinical hypothyroidism. In the future it may be used as a first line treatment for this disorder.
References
1. D. Kirsten, “The thyroid gland: physiology and pathophysiology,” Neonatal Netw., vol. 19, no. 8, pp. 11–26, 2000, doi: 10.1891/0730-0832.19.8.11.
2. G. Kleinau et al., “Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work,” Front. Endocrinol. (Lausanne)., vol. 8, no. APR, Apr. 2017, doi: 10.3389/FENDO.2017.00086.
3. H. Grasberger, J. Van Sande, A. H. D. Mahameed, Y. Tenenbaum-Rakover, and S. Refetoff, “A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis,” J. Clin. Endocrinol. Metab., vol. 92, no. 7, pp. 2816–2820, 2007, doi: 10.1210/JC.2007-0366.
4. B. Biondi, A. R. Cappola, and D. S. Cooper, “Subclinical Hypothyroidism: A Review,” JAMA, vol. 322, no. 2, pp. 153–160, Jul. 2019, doi: 10.1001/JAMA.2019.9052.
5. L. Chaker, S. Razvi, I. M. Bensenor, F. Azizi, E. N. Pearce, and R. P. Peeters, “Hypothyroidism,” Nat. Rev. Dis. Primers, vol. 8, no. 1, Dec. 2022, doi: 10.1038/S41572-022-00357-7.
6. M. L. Croze and C. O. Soulage, “Potential role and therapeutic interests of myo-inositol in metabolic diseases,” Biochimie, vol. 95, no. 10, pp. 1811–1827, Oct. 2013, doi: 10.1016/J.BIOCHI.2013.05.011.
7. E. M. Milewska, A. Czyzyk, B. Meczekalski, and A. D. Genazzani, “Inositol and human reproduction. From cellular metabolism to clinical use,” Gynecol. Endocrinol., vol. 32, no. 9, pp. 690–695, 2016, doi: 10.1080/09513590.2016.1188282.
8. U. Feldt-Rasmussen, G. Effraimidis, and M. Klose, “The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions,” Mol. Cell. Endocrinol., vol. 525, Apr. 2021, doi: 10.1016/J.MCE.2021.111173.
9. R. M. Lechan and R. Toni, “Functional Anatomy of the Hypothalamus and Pituitary,” Oxford Textbook of Endocrinology and Diabetes 3e, pp. 111–122, Nov. 2016, doi: 10.1093/med/9780198870197.003.0014.
10. N. Stathatos, “Thyroid physiology,” Med. Clin. North Am., vol. 96, no. 2, pp. 165–173, Mar. 2012, doi: 10.1016/J.MCNA.2012.01.007.
11. M. B. Zimmermann, P. L. Jooste, and C. S. Pandav, “Iodine-deficiency disorders,” Lancet, vol. 372, no. 9645, pp. 1251–1262, 2008, doi: 10.1016/S0140-6736(08)61005-3.
12. M. Andersson, B. De Benoist, F. Delange, and J. Zupan, “Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation,” Public Health Nutr., vol. 10, no. 12A, pp. 1606–1611, 2007, doi: 10.1017/S1368980007361004.
13. M. Hingorani et al., “The Biology of the Sodium Iodide Symporter and its Potential for Targeted Gene Delivery,” Curr. Cancer Drug Targets, vol. 10, no. 2, p. 242, Apr. 2010, doi: 10.2174/156800910791054194.
14. S. Rigutto et al., “Activation of Dual Oxidases Duox1 and Duox2: DIFFERENTIAL REGULATION MEDIATED BY cAMP-DEPENDENT PROTEIN KINASE AND PROTEIN KINASE C-DEPENDENT PHOSPHORYLATION,” J. Biol. Chem., vol. 284, no. 11, p. 6725, Mar. 2009, doi: 10.1074/JBC.M806893200.
15. J. Ruf and P. Carayon, “Structural and functional aspects of thyroid peroxidase,” Arch. Biochem. Biophys., vol. 445, no. 2, pp. 269–277, Jan. 2006, doi: 10.1016/J.ABB.2005.06.023.
16. B. Di Jeso and P. Arvan, “Thyroglobulin From Molecular and Cellular Biology to Clinical Endocrinology,” Endocr. Rev., vol. 37, no. 1, p. 2, 2015, doi: 10.1210/ER.2015-1090.
17. M. Mallya and A. L. Ogilvy-Stuart, “Thyrotropic hormones,” Best Pract. Res. Clin. Endocrinol. Metab., vol. 32, no. 1, pp. 17–25, Jan. 2018, doi: 10.1016/J.BEEM.2017.10.006.
18. J. C. Morris, “Structure and function of the TSH receptor: its suitability as a target for radiotherapy,” Thyroid, vol. 7, no. 2, pp. 253–258, 1997, doi: 10.1089/THY.1997.7.253.
19. P. Kopp, “Human Genome and Diseases: Review¶The TSH receptor and its role in thyroid disease,” Cell. Mol. Life Sci., vol. 58, no. 9, p. 1301, 2001, doi: 10.1007/PL00000941.
20. S. A. Morshed, R. Latif, and T. F. Davies, “Characterization of Thyrotropin Receptor Antibody-Induced Signaling Cascades,” Endocrinology, vol. 150, no. 1, p. 519, Jan. 2008, doi: 10.1210/EN.2008-0878.
21. M. Tuncel, “Thyroid Stimulating Hormone Receptor,” Mol. Imaging Radionucl. Ther., vol. 26, no. Suppl 1, p. 87, 2017, doi: 10.4274/2017.26.SUPPL.10.
22. S. Benvenga, M. Nordio, A. S. Laganà, and V. Unfer, “The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management,” Front. Endocrinol. (Lausanne)., vol. 12, p. 662582, May 2021, doi: 10.3389/FENDO.2021.662582.
23. G. Catli, A. Abaci, A. Büyükgebiz, and E. Bober, “Subclinical hypothyroidism in childhood and adolescense,” J. Pediatr. Endocrinol. Metab., vol. 27, no. 11–12, pp. 1049–1057, Nov. 2014, doi: 10.1515/JPEM-2014-0089.
24. R. P. Peeters, “Subclinical Hypothyroidism,” N. Engl. J. Med., vol. 376, no. 26, pp. 2556–2565, Jun. 2017, doi: 10.1056/NEJMCP1611144.
25. F. Monzani et al., “Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study,” J. Clin. Endocrinol. Metab., vol. 86, no. 3, pp. 1110–1115, 2001, doi: 10.1210/JCEM.86.3.7291.
26. D. S. Cooper and B. Biondi, “Subclinical thyroid disease,” Lancet, vol. 379, no. 9821, pp. 1142–1154, 2012, doi: 10.1016/S0140-6736(11)60276-6.
27. N. Correia et al., “Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism,” J. Clin. Endocrinol. Metab., vol. 94, no. 10, pp. 3789–3797, 2009, doi: 10.1210/JC.2008-2702.
28. B. Gencer et al., “Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts,” Circulation, vol. 126, no. 9, pp. 1040–1049, Aug. 2012, doi: 10.1161/CIRCULATIONAHA.112.096024.
29. N. Rodondi et al., “Subclinical hypothyroidism and the risk of coronary heart disease and mortality,” JAMA, vol. 304, no. 12, pp. 1365–1374, 2010, doi: 10.1001/JAMA.2010.1361.
30. L. Chaker et al., “Subclinical Hypothyroidism and the Risk of Stroke Events and Fatal Stroke: An Individual Participant Data Analysis,” J. Clin. Endocrinol. Metab., vol. 100, no. 6, pp. 2181–2191, Jun. 2015, doi: 10.1210/JC.2015-1438.
31. X. L. Liu et al., “Alteration of lipid profile in subclinical hypothyroidism: a meta-analysis,” Med. Sci. Monit., vol. 20, pp. 1432–1441, Aug. 2014, doi: 10.12659/MSM.891163.
32. B. J. Holub, “Metabolism and function of myo-inositol and inositol phospholipids,” Annu. Rev. Nutr., vol. 6, no. 1, pp. 563–597, Jul. 1986, doi: 10.1146/ANNUREV.NU.06.070186.003023.
33. U. Schlemmer, W. Frølich, R. M. Prieto, and F. Grases, “Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis,” Mol. Nutr. Food Res., vol. 53 Suppl 2, no. SUPPL. 2, pp. S330–S375, 2009, doi: 10.1002/MNFR.200900099.
34. R. S. Clements and B. Darnell, “Myo-inositol content of common foods: development of a high-myo-inositol diet,” Am. J. Clin. Nutr., vol. 33, no. 9, pp. 1954–1967, 1980, doi: 10.1093/AJCN/33.9.1954.
35. S. Schneider, “Inositol transport proteins,” FEBS Lett., vol. 589, no. 10, pp. 1049–1058, Apr. 2015, doi: 10.1016/J.FEBSLET.2015.03.012.
36. S. De Grazia, G. Carlomagno, V. Unfer, and P. Cavalli, “Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects,” Expert Opin. Drug Deliv., vol. 9, no. 9, pp. 1033–1039, Sep. 2012, doi: 10.1517/17425247.2012.701616.
37. S. Lam, A. McWilliams, J. LeRiche, C. MacAulay, L. Wattenberg, and E. Szabo, “A phase I study of myo-inositol for lung cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev., vol. 15, no. 8, pp. 1526–1531, Aug. 2006, doi: 10.1158/1055-9965.EPI-06-0128.
38. M. Nordio and R. Pajalich, “Combined Treatment with Myo-Inositol and Selenium Ensures Euthyroidism in Subclinical Hypothyroidism Patients with Autoimmune Thyroiditis,” J. Thyroid Res., vol. 2013, p. 424163, 2013, doi: 10.1155/2013/424163.
39. J. Payer, P. Jackuliak, M. Kužma, M. Džupon, and P. Vaňuga, “Supplementation with myo-inositol and Selenium improves the clinical conditions and biochemical features of women with or at risk for subclinical hypothyroidism,” Front. Endocrinol. (Lausanne)., vol. 13, p. 1067029, Nov. 2022, doi: 10.3389/FENDO.2022.1067029/FULL.
40. M. Nordio and S. Basciani, “Treatment with Myo-Inositol and Selenium Ensures Euthyroidism in Patients with Autoimmune Thyroiditis,” Int. J. Endocrinol., vol. 2017, p. 2549491, 2017, doi: 10.1155/2017/2549491.
41. N. V. Pasyechko and V. M. Kulchinska, “The effect of the combined use of myo-inositol, vitaminD and selenium on the cytokine status in women of reproductive age with autoimmune thyroiditis,” INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 19, no. 3, pp. 188–193, Jun. 2023, doi: 10.22141/2224-0721.19.3.2023.1270.
42. M. Nordio and S. Basciani, “Evaluation of thyroid nodule characteristics in subclinical hypothyroid patients under a myo-inositol plus selenium treatment,” Eur. Rev. Med. Pharmacol. Sci., vol. 22, no. 7, pp. 2153–2159, 2018, doi: 10.26355/EURREV_201804_14749.
43. G. Briguglia, “Time-dependent efficacy of myo-inositol plus selenium in subclinical hypothyroidism”.
44. C. Pace et al., “Role of selenium and myo-inositol supplementation on autoimmune thyroiditis progression,” Endocr. J., vol. 67, no. 11, pp. 1093–1098, 2020, doi: 10.1507/ENDOCRJ.EJ20-0062.
45. G. Porcaro and P. Angelozzi, “Myo-inositol and selenium prevent subclinical hypothyroidism during pregnancy: an observational study”.
46. G. Morgante, M. C. Musacchio, R. Orvieto, M. G. Massaro, and V. De Leo, “Alterations in thyroid function among the different polycystic ovary syndrome phenotypes,” Gynecological Endocrinology, vol. 29, no. 11, pp. 967–969, Nov. 2013, doi: 10.3109/09513590.2013.829445.
47. P. Fallahi et al., “Myo-inositol in autoimmune thyroiditis, and hypothyroidism,” Rev. Endocr. Metab. Disord., vol. 19, no. 4, pp. 349–354, Dec. 2018, doi: 10.1007/S11154-018-9477-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Kacper Szada-Borzyszkowski, Konstancja Owczarenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 8
Number of citations: 0