Mechanical Chest Compression Devices - A Narrative Review
DOI:
https://doi.org/10.12775/JEHS.2026.88.68484Keywords
mechanical chest compression devices, CPR quality, Emergency Medical Services, resuscitation guidelinesAbstract
Introduction & Aim: Sudden cardiac arrest remains a leading cause of mortality, with global survival rates remaining low. High-quality CPR characterized by adequate depth and minimal interruptions, is the cornerstone of survival. Manual CPR quality often declines due to rescuer fatigue and challenging environments. Mechanical chest compression devices (MCCDs) offer a potential solution to ensure consistent quality. This study aims to provide an overview of MCCDs available in the Polish Emergency Medical System, highlighting their advantages, limitations and applications, while evaluating their clinical effectiveness compared to manual CPR.
Material and methods: The study consisted of a descriptive and comparative literature review, focusing on the technical data and clinical evidence (up to 2025) for the AutoPulse, LUCAS, and Corpuls CPR systems used in Poland. Data analysis included RCTS, cohort studies, systematic reviews, and meta-analyses evaluating MCCDs, utilizing PubMed, Scopus, and Google Scholar.
Results: MCCDs ensure high-quality, uninterrupted compressions, particularly in challenging transport or specific scenarios, freeing up personnel for other tasks. Large-scale randomized controlled trials (RCTs) and recent meta-analyses demonstrate that MCCDs provide comparable survival outcomes to high-quality manual CPR, with survival rates ranging from 6.0% to 9.4%. However, MCCDs show a significant advantage in specialized scenarios - prolonged transport, catheterization labs, or as a bridge to advanced therapies like eCPR and extracorporeal life support.
Conclusions: MCCDs are reliable alternatives for specific clinical situations. Although they involve higher costs and different injury patterns, the benefits of maintaining consistent CPR quality in conditions where manual compressions fail are measurable. Current guidelines recommend their use as a viable alternative in specific, difficult circumstances, rather than as a routine replacement for manual CPR.
References
1. Gräsner, J. T., Wnent, J., Herlitz, J., Perkins, G. D., Lefering, R., Tjelmeland, I., Koster, R. W., Masterson, S., Rossell-Ortiz, F., Maurer, H., Böttiger, B. W., Moertl, M., Mols, P., Alihodžić, H., Hadžibegović, I., Ioannides, M., Truhlář, A., Wissenberg, M., Salo, A., Escutnaire, J., … Bossaert, L. (2020). Survival after out-of-hospital cardiac arrest in Europe - Results of the EuReCa TWO study. Resuscitation, 148, 218–226. https://doi.org/10.1016/j.resuscitation.2019.12.042
2. Soar, Jasmeet et al. (2025) European Resuscitation Council Guidelines 2025 Adult Advanced Life Support. Resuscitation, Volume 215, 110769 https://doi.org/10.1016/j.resuscitation.2025.110769
3. Chi CH, Kao CL, Hong MY, Cheng SC, Tsou JY. (2025) Muscular fitness thresholds for predicting high-quality CPR: a crossover study of two compression strategies. Am J Emerg Med;100:148-153. https://doi.org/10.1016/j.ajem.2025.11.029
4. McDonald, Catherine & Heggie, James & Jones, Christopher & Thorne, Chris & Hulme, Jonathan. (2012). Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performanceEmergency Medicine Journal 2013;30:623-627. https://doi.org/10.1136/emermed-2012-201610
5. Aygun M., Yaman HE., Genc A., Karadağlı F., Eren NB. Mechanical Chest Compression Devices: Historical Evolution, Classification and Current Practices, A Short Review. Eurasian Journal of Emergency Medicine. 2016, 15, 94-104. https://doi.org/10.5152/eajem.2016.74936
6. Halperin H., Carver DJ. Mechanical CPR Devices. Signa Vitae. 2010, 5, 69-73. https://doi.org/10.22514/SV51.092010.16
7. Zoll Medical Corporation. (N.D). AutoPulse Resuscitation System Model 100 user guide [User manual]. ZOLL Medical Corporation.
8. Stryker Medical. (2023). LUCAS 3, v3.1 chest compression system: Data sheet [Technical specifications].
https://www.stryker.com/content/dam/stryker/ems/products/lucas-3/resources/LUCAS%203%20v3.1%20brochure%20-%20ANZ.pdf?utm_ (Access: 30/12/2025)
9. Corpuls. (2022). Corpuls CPR mechanical chest compression system: Technical specifications [Product brochure].
https://www.theortusgroup.com/wp-content/uploads/2020/07/corpuls-cpr-brochure.pdf?utm (Access: 30/12/2025)
10. Oschatz E., Wunderbaldinger P., Sterz F., et al. Cardiopulmonary resuscitation performed by bystanders does not increase adverse effects as assessed by chest radiography. Anesthesia & Analgesia. 2001, 93(1), 128-133. https://doi.org/10.1097/00000539-200107000-00027
11. Krischer JP., Fine EG., Davis JH., et al. Complications of cardiac resuscitation. Chest Journal. 1987, 92(2), 287-291. https://doi.org/10.1378/chest.92.2.287
12. Baubin M., Kollmitzer J., Pomaroli A., et al. Force distribution across the heel of the hand during simulated manual chest compression. Resuscitation. 1997, 35(3), 259-263. https://doi.org/10.1016/S0300-9572(97)00040-3
13. Smekal D (2013) Safety with Mechanical Chest Compressions in CPR: Clinical studies with the LUCAS™ device, Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A639365&dswid=1240
14. Hellevuo H., Sainio M., Nevalainen R., et al. Deeper chest compression – More complications for cardiac arrest patients? Resuscitation. 2013, 84(6), 760-765. https://doi.org/10.1016/j.resuscitation.2013.02.015
15. Abella, B. S., Alvarado, J. P., Myklebust, H., Edelson, D. P., Barry, A., O'Hearn, N., Vanden Hoek, T. L., & Becker, L. B. (2005). Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA, 293(3), 305–310. https://doi.org/10.1001/jama.293.3.305
16. Dellimore KH., Scheffer C. Optimal chest compression in cardiopulmonary resuscitation depends upon thoracic and back support stiffness. Medical & Biological Engineering & Computing, 2012, 50(12), 1269-1278. https://doi.org/10.1007/s11517-012-0963-z
17. Gässler H., Ventzke MM., Lampl L., et al. Transport with ongoing resuscitation: a comparison between manual and mechanical compression. Emergency Medicine Journal. 2013, 30(7), 589-592. https://doi.org/10.1136/emermed-2012-201142
18. Hightower, D., Thomas, S. H., Stone, C. K., Dunn, K., & March, J. A. (1995). Decay in quality of closed-chest compressions over time. Annals of emergency medicine, 26(3), 300–303. https://doi.org/10.1016/s0196-0644(95)70076-5
19. Hardig BM. Mechanical Devices For Heart Compression – The Past, Present and Future. EMS. 2016, 1.
20. Kazuhiko O., Shunsuke S., Yuka S. et al. The analysis of efficacy for AutoPulse system in flying helicopter. Resuscitation. 2013, 84(8), 1045-1050. https://doi.org/10.1016/j.resuscitation.2013.01.014
21. Pietsch, U., Reiser, D., Wenzel, V., Knapp, J., Tissi, M., Theiler, L., Rauch, S., Meuli, L., & Albrecht, R. (2020). Mechanical chest compression devices in the helicopter emergency medical service in Switzerland. Scandinavian journal of trauma, resuscitation and emergency medicine, 28(1), 71. https://doi.org/10.1186/s13049-020-00758-1
22. Kim, T. H., Shin, S. D., Song, K. J., Hong, K. J., Ro, Y. S., Song, S. W., & Kim, C. H. (2017). Chest Compression Fraction between Mechanical Compressions on a Reducible Stretcher and Manual Compressions on a Standard Stretcher during Transport in Out-of-Hospital Cardiac Arrests: The Ambulance Stretcher Innovation of Asian Cardiopulmonary Resuscitation (ASIA-CPR) Pilot Trial. Prehospital emergency care, 21(5), 636–644.https://doi.org/10.1080/10903127.2017.1317892
23. Di Giacinto, I., Guarnera, M., Esposito, C., Falcetta, S., Cortese, G., Pascarella, G., Sorbello, M., & Cataldo, R. (2021). Emergencies in obese patients: a narrative review. Journal of anesthesia, analgesia and critical care, 1(1), 13. https://doi.org/10.1186/s44158-021-00019-2
24. Wyss, C. A., Fox, J., Franzeck, F., Moccetti, M., Scherrer, A., Hellermann, J. P., & Lüscher, T. F. (2010). Mechanical Versus Manual Chest Compression During CPR in a Cardiac Catherization Setting. Cardiovascular Medicine, 13(3), 92. https://doi.org/10.4414/cvm.2010.01480
25. Wagner, H., Terkelsen, C. J., Friberg, H., et al. (2010). Cardiac arrest in the catheterization laboratory: A 5-year experience of using mechanical chest compressions to facilitate percutaneous coronary intervention during prolonged resuscitation efforts. Resuscitation, 81 (4), 383–387. https://doi.org/10.1016/j.resuscitation.2009.11.006
26. Patel, Het; Markham, Cory; Virani, Ahmed; Trosclair, Chris. 193: Mechanical Compression Device Utilization in ECPR Reduces Risk of Neurologic Complications: Single-Institution Review. ASAIO Journal 70(Supplement 4):p 23, September-October 2024. | DOI: https://doi.org/10.1097/01.mat.0001069868.91452.b6
27. Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, Hockings L, Shaw J, Duffy SJ, Burrell A, Cameron P, Smit de V, Kaye DM. (2015) Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015 Jan;86:88-94 https://doi.org/10.1016/j.resuscitation.2014.09.010
28. Mitchell, O. J., Shi, X., Abella, B. S., & Girotra, S. (2023). Mechanical cardiopulmonary resuscitation during in-hospital cardiac arrest. Journal of the American Heart Association, 12(7), e028409. https://doi.org/10.1161/JAHA.122.027726
29.Wagner, H., Hardig, B. M., Rundgren, M., et al. (2016). Mechanical chest compressions in the coronary catheterization laboratory to facilitate coronary intervention and survival in patients requiring prolonged resuscitation efforts. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, Article 4. https://doi.org/10.1186/s13049-016-0198-3
30. Preda, T., Nafi, M., Villa, M., & Cassina, T. (2023). Traumatic injuries after manual and automatic mechanical compression during cardiopulmonary resuscitation, a retrospective cohort study. Resuscitation plus, 16, 100465. https://doi.org/10.1016/j.resplu.2023.100465
31. Smekal, D., Lindgren, E., Sandler, H., Johansson, J., & Rubertsson, S. (2014). CPR-related injuries after manual or mechanical chest compressions with the LUCAS™ device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation, 85(12), 1708–1712. https://doi.org/10.1016/j.resuscitation.2014.09.017
32. Pinto DC., Haden-Pinneri K., Love JC. Manual and automated cardiopulmonary resuscitation (CPR): a comparison of associated injury patterns. Journal of Forensic Science. 2013, 58(4), 904-909. https://doi.org/10.1111/1556-4029.12146
33. Ondruschka, B., Baier, C., Bayer, R. et al. (2018). Chest compression-associated injuries in cardiac arrest patients treated with manual chest compressions versus automated chest compression devices (LUCAS II) – a forensic autopsy-based comparison. Forensic Sci Med Pathol 14, 515–525 https://doi.org/10.1007/s12024-018-0024-5
34. Rubertsson, S., Lindgren, E., Smekal, D., et al. (2014). Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: The LINC randomized trial. JAMA, 311(1), 53–61. https://doi.org/10.1001/jama.2013.282538
35. Perkins GD, Lall R, Quinn T, et al. (2015). Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): A pragmatic, cluster randomised controlled trial. The Lancet, 385(9972), 947–955. https://doi.org/10.1016/S0140-6736(14)61886-9
36. Wik, L., Olsen, J. A., Persse, D., Sterz, F., Lozano, M., Jr, Brouwer, M. A., Westfall, M., Souders, C. M., Malzer, R., van Grunsven, P. M., Travis, D. T., Whitehead, A., Herken, U. R., & Lerner, E. B. (2014). Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation, 85(6), 741–748. https://doi.org/10.1016/j.resuscitation.2014.03.005
37. Li, H., Wang, D., Yu, Y. (2016). Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2016 Feb 1;24:10. https://doi.org/10.1186/s13049-016-0202-y
38. Parsons IT, Cox AT, Rees PSC (2018). Military application of mechanical CPR devices: a pressing requirement? BMJ Military Health; 164: 438-441.https://doi.org/10.1136/jramc-2018-000908
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Przemysław Kołodziej, Andrii Bilyk, Maria Król, Natalia Marta Bruska, Ewa Szplit, Katarzyna Więckowska, Patryk Hebda, Mateusz Kubicki, Mikołaj Patalong, Wiktoria Michnowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 16
Number of citations: 0