Maternal Diabesity and Fetoplacental Dysfunction: Pathophysiological Pathways and Clinical Implications
DOI:
https://doi.org/10.12775/JEHS.2026.87.67657Keywords
placental diabesity, maternal obesity, gestational diabetes mellitus, placental dysfunction, fetal programming, metabolic diseaseAbstract
Background. Maternal diabesity, defined as the coexistence of obesity and diabetes during pregnancy, is an increasingly prevalent metabolic condition associated with adverse maternal, placental, and fetal outcomes. Beyond hyperglycemia, it is characterized by chronic inflammation, insulin resistance, oxidative stress, endothelial dysfunction, which impair placental development and function. The fetoplacental unit represents a critical interface through which maternal metabolic disturbances shape fetal growth and long-term health.
Aim. To integrate current evidence on placental diabesity, focusing on key mechanisms linking maternal metabolic dysfunction to placental maladaptation and its clinical implications for pregnancy and offspring outcomes.
Material and methods. This research was based on a literature review of PubMed and Web of Science articles published between 2010-2025. Peer-reviewed experimental, clinical and translational studies, meta-analyses were included and synthesized narratively.
Description of knowledge. The available evidence indicates that maternal diabesity induces early and persistent fetoplacental dysfunction, characterized by impaired endothelial insulin signaling, reduced nitric oxide bioavailability, enhanced oxidative and inflammatory stress, mitochondrial impairment, and activation of endoplasmic reticulum stress pathways. These interconnected alterations compromise placental blood flow, nutrient transport, and metabolic adaptability, thereby increasing fetal exposure to an adverse intrauterine environment and contributing to developmental programming of metabolic and cardiovascular disease.
Conclusions. Fetoplacental dysfunction is a key mechanism linking maternal diabesity to impaired fetal development and long-term offspring health. Understanding placental maladaptation in diabesity is essential for developing preventive and therapeutic strategies beyond glycaemic control to reduce intergenerational metabolic risk.
References
1. Ng M, Gakidou E, Lo J, et al. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021. Lancet. 2025;405(10481):813-838. doi:10.1016/S0140-6736(25)00355-1
2. Magliano D, Boyk E, Balkau Beverley, et al. IDF Diabetes Atlas 10th Edition Scientific Committee.; 2021. www.diabetesatlas.org
3. Mnatzaganian G, Woodward M, McIntyre HD, et al. Trends in percentages of gestational diabetes mellitus attributable to overweight, obesity, and morbid obesity in regional Victoria: an eight-year population-based panel study. BMC Pregnancy Childbirth. 2022;22(1):95. doi:10.1186/s12884-022-04420-9
4. Zhang Y, Lu M, Yi Y, et al. Influence of maternal body mass index on pregnancy complications and outcomes: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2024;15:1280692. doi:10.3389/fendo.2024.1280692
5. Kral JG. Diabesity: Palliating, curing or preventing the dysmetabolic diathesis. Maturitas. 2014;77(3):243-248. doi:10.1016/j.maturitas.2013.12.004
6. Burgio E, Lopomo A, Migliore L. Obesity and diabetes: From genetics to epigenetics. Mol Biol Rep. 2015;42(4):799-818. doi:10.1007/s11033-014-3751-z
7. Cornejo M, Fuentes G, Valero P, et al. Gestational diabesity and foetoplacental vascular dysfunction. Acta Physiol. 2021;232(4):e13671. doi:10.1111/apha.13671
8. Kaza M, Paltoglou G, Rodolaki K, Kakleas K, Karanasios S, Karavanaki K. Gestational Diabetes and Obesity: Immediate and Late Sequelae for Offspring. Children. 2025;12(9):1263. doi:10.3390/children12091263
9. Valero P, Fuentes G, Cornejo M, et al. Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med. 2022;87:101019. doi:10.1016/j.mam.2021.101019
10. Desoye G, Van Poppel M. The feto-placental dialogue and diabesity. Best Pract Res Clin Obstet Gynaecol. 2015;29(1):15-23. doi:10.1016/j.bpobgyn.2014.05.012
11. Grismaldo R A, Luévano-Martínez LA, Reyes M, García-Márquez G, García-Rivas G, Sobrevia L. Placental mitochondrial impairment and its association with maternal metabolic dysfunction. J Physiol. Published online 2024:Epub ahead of print. doi:10.1113/JP285935
12. Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta - Mol Basis Dis. 2023;1869(8):166834. doi:10.1016/j.bbadis.2023.166834
13. Pardo F, Subiabre M, Fuentes G, et al. Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med. 2019;66:40-48. doi:10.1016/j.mam.2019.02.003
14. Cabalín C, Villalobos-Labra R, Toledo F, Sobrevia L. Involvement of A2B adenosine receptors as anti-inflammatory in gestational diabesity. Mol Aspects Med. 2019;66:31-39. doi:10.1016/j.mam.2019.01.001
15. Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med. 2019;66:21-30. doi:10.1016/j.mam.2018.11.002
16. Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med. 2019;66:49-61. doi:10.1016/j.mam.2018.11.001
17. Schellong K, Melchior K, Ziska T, Rancourt RC, Henrich W, Plagemann A. Maternal but not paternal high-fat diet (HFD) exposure at conception predisposes for ‘diabesity’ in offspring generations. Int J Environ Res Public Health. 2020;17(12):4229. doi:10.3390/ijerph17124229
18. Schellong K, Neumann U, Rancourt RC, Plagemann A. Increase of long-term “diabesity” risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished “small-for-gestational-age” (SGA) rats. PLoS One. 2013;8(11):e78799. doi:10.1371/journal.pone.0078799
19. Reifsnyder PC, Churchill G, Leiter EH. Maternal environment and genotype interact to establish diabesity in mice. Genome Res. 2000;10(10):1568-1578. doi:10.1101/gr.147000
20. Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601(7):1287-1306. doi:10.1113/JP284139
21. Bianchi C, Taricco E, Cardellicchio M, et al. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta. 2021;103:59-63. doi:10.1016/j.placenta.2020.10.013
22. Ehlers E, Talton OO, Schust DJ, Schulz LC. Placental structural abnormalities in gestational diabetes and when they develop: A scoping review. Placenta. 2021;116:58-66. doi:10.1016/j.placenta.2021.04.005
23. Kolcsar B, Kemeny KK, Kozinszky Z, Ducza E, Suranyi A. Placental Volume, Vascularization, and Epigenetic Modifications in Obesity and Gestational Diabetes: A 3-D Ultrasound and Molecular Analysis. Life. 2025;15(11):1691. doi:10.3390/life15111691
24. Segura MT, Demmelmair H, Krauss-Etschmann S, et al. Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta. 2017;57:144-151. doi:10.1016/j.placenta.2017.07.001
25. Uhl O, Demmelmair H, Segura MT, et al. Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Res Clin Pract. 2015;109(2):364-371. doi:10.1016/j.diabres.2015.05.032
26. Hastie R, Lappas M. The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta. 2014;35(9):673-683. doi:10.1016/j.placenta.2014.06.368
27. Mandò C, Castiglioni S, Novielli C, et al. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants. 2024;13(7):858. doi:10.3390/antiox13070858
28. Mandò C, Anelli GM, Novielli C, et al. Impact of obesity and hyperglycemia on placental mitochondria. Oxid Med Cell Longev. 2018;2018:2378189. doi:10.1155/2018/2378189
29. Kadam L, Chan K, Tawater E, Myatt L. Dysregulation of placental mitochondrial structure dynamics and clearance in maternal obesity and gestational diabetes. Placenta. 2025;171:140-149. doi:10.1016/j.placenta.2025.09.019
30. Wang R, Liu J, Li Q, et al. Obesity concurrent with gestational diabetes mellitus dysregulates mitochondria-endoplasmic reticulum contacts in human placenta. Sci Rep. Published online 2025:Epub ahead of print. doi:doi: 10.1038/s41598-025-31193-w.
31. Pantham P, Irving ALMH, Powell TL. Inflammation in Maternal Obesity and Gestational Diabetes Mellitus. Placenta. 2015;36(7):709-715. doi:10.1016/j.placenta.2015.04.006
32. Musumeci A, Mcelwain CJ, Manna S, Mccarthy F, Mccarthy C. Exposure to gestational diabetes mellitus increases subclinical inflammation mediated in part by obesity. Clin Exp Immunol. 2024;216(3):280-292. doi:10.1093/cei/uxae010
33. Guzmán-Gutiérrez E, Arroyo P, Salsoso R, et al. Role of Insulin and Adenosine in the Human Placenta Microvascular and Macrovascular Endothelial Cell Dysfunction in Gestational Diabetes Mellitus. Microcirculation. 2014;21(1):26-37. doi:10.1111/micc.12077
34. Sobrevia L, Salsoso R, Fuenzalida B, et al. Insulin is a key modulator of fetoplacental endothelium metabolic disturbances in gestational diabetes mellitus. Front Physiol. 2016;7:119. doi:10.3389/fphys.2016.00119
35. Subiabre M, Silva L, Villalobos-Labra R, et al. Maternal insulin therapy does not restore foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta - Mol Basis Dis. 2017;1863(11):2987-2998. doi:10.1016/j.bbadis.2017.07.022
36. Sobrevia L, Salsoso R, Sáez T, Sanhueza C, Pardo F, Leiva A. Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus. Exp Physiol. 2015;100(3):231-238. doi:10.1113/expphysiol.2014.082743
37. Guzmán-Gutiérrez E, Westermeier F, Salomón C, et al. Insulin-increased L-arginine transport requires A2A adenosine receptors activation in human umbilical vein endothelium. PLoS One. 2012;7(7):e41705. doi:10.1371/journal.pone.0041705
38. Salomón C, Westermeier F, Puebla C, et al. Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin. PLoS One. 2012;7(7):e40578. doi:10.1371/journal.pone.0040578
39. Westermeier F, Salomón C, Farías M, et al. Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium. FASEB J. 2015;29(1):37-49. doi:10.1096/fj.14-254219
40. Araos J, Silva L, Salsoso R, et al. Intracellular and extracellular pH dynamics in the human placenta from diabetes mellitus. Placenta. 2016;43:47-53. doi:10.1016/j.placenta.2016.05.003
41. Blickstein I, Doyev R, Trojner Bregar A, Bržan Šimenc G, Verdenik I, Tul N. The effect of gestational diabetes, pre-gravid maternal obesity, and their combination (‘diabesity’) on outcomes of singleton gestations. J Matern Neonatal Med. 2018;31(5):640-643. doi:10.1080/14767058.2017.1293030
42. Simões T, Queirós A, Valdoleiros S, Marujo AT, Felix N, Blickstein I. Concurrence of gestational diabetes and pre-gravid obesity (“diabesity”) in twin gestations. J Matern Neonatal Med. 2017;30(15):1813-1815. doi:10.1080/14767058.2016.1226797
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Joanna Szydełko, Magdalena Szydełko-Gorzkowicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 20
Number of citations: 0