Modern Methods of Connecting Bone Fragments - A Review of Techniques, Materials and Treatment Results
DOI:
https://doi.org/10.12775/JHES.2026.87.67604Keywords
long bone fractures, osteosynthesis, MIPO, 3D printing, robotic-assisted surgery, biodegradable, implants, magnesium alloys, PLGA, fixation stability, orthopedic traumaAbstract
The aim of this paper is to review current and emerging methods of surgical treatment of long bone fractures. Particular attention is paid to features such as fixation stability, protection of the biological environment and the impact of new technologies. Classic techniques, such as locking plates and intramedullary nails, remain the standard, offering comparable treatment results with differences in the frequency of complications. MIPO reduces blood supply destabilization and preserves post-traumatic hematoma, reducing the number of complications. Rapidly developing methods such as 3D printing and robotic surgery enable precise planning and personalization of implants, leading to increased positioning accuracy and reducing radiation exposure. At the same time, there is growing interest in biodegradable implants. Magnesium alloys show osteogenic and angiogenic potential, although their clinical effectiveness depends on controlling the rate of degradation. PLGA polymers are used especially in pediatric traumatology, eliminating the need for metal removal. However, many of the innovations described require further research. Combining classic methods with new technologies allows for individualized treatment and optimized results.
References
1. Balbachevsky D, Gomes PS, Credídio MV, Cruz BAP, Fernandes HJA, Baldy Dos Reis F, et al. Intramedullary nail versus bridge plate in open tibial fractures - randomized clinical trial. Injury. 2021 Jul;52 Suppl 3:S77–83.
2. Vallier HA. Current Evidence: Plate Versus Intramedullary Nail for Fixation of Distal Tibia Fractures in 2016. J Orthop Trauma. 2016 Nov;30 Suppl 4:S2–6.
3. Chen BK, Tai TH, Lin SH, Chen KH, Huang YM, Chen CY. Intramedullary Nail vs. Plate Fixation for Pathological Humeral Shaft Fracture: An Updated Narrative Review and Meta-Analysis of Surgery-Related Factors. J Clin Med. 2024 Jan 28;13(3):755.
4. D’Ameida SS, Cannon R, Vu NT, Ponce BA, Redden D. Comparing Intramedullary Nails and Locking Plates in Displaced Proximal Humerus Fracture Management: A Systematic Review and Meta-Analysis. Cureus [Internet]. 2024 Feb 15 [cited 2025 Dec 2]; Available from: https://www.cureus.com/articles/189074-comparing-intramedullary-nails-and-locking-plates-in-displaced-proximal-humerus-fracture-management-a-systematic-review-and-meta-analysis
5. Sun Q, Ge W, Li G, Wu J, Lu G, Cai M, et al. Locking plates versus intramedullary nails in the management of displaced proximal humeral fractures: a systematic review and meta-analysis. Int Orthop. 2018 Mar 1;42(3):641–50.
6. Wang G, Mao Z, Zhang L, Zhang L, Zhao Y, Yin P, et al. Meta-analysis of locking plate versus intramedullary nail for treatment of proximal humeral fractures. J Orthop Surg. 2015 Sep 15;10:122.
7. Bu G, Sun W, Li J, Yang T, Li M, Wei W. MutiLoc Nail Versus Philos Plate in Treating Proximal Humeral Fractures: A Retrospective Study Among the Alderly. Geriatr Orthop Surg Rehabil. 2021 Jan;12:21514593211043961.
8. Shi X, Liu H, Xing R, Mei W, Zhang L, Ding L, et al. Effect of intramedullary nail and locking plate in the treatment of proximal humerus fracture: an update systematic review and meta-analysis. J Orthop Surg. 2019 Aug 30;14(1):285.
9. Yu J, Li L, Wang T, Sheng L, Huo Y, Yin Z, et al. Intramedullary nail versus plate treatments for distal tibial fractures: A meta-analysis. Int J Surg. 2015 Apr 1;16:60–8.
10. Boadi PJ, Da Silva A, Mizels J, Joyce CD, Anakwenze OA, Klifto CS, et al. Intramedullary versus locking plate fixation for proximal humerus fractures: indications and technical considerations. JSES Rev Rep Tech. 2024 Aug 1;4(3):615–24.
11. Colasanti CA, Anil U, Cerasani MN, Li ZI, Morgan AM, Simovitch RW, et al. Management of Humeral Shaft Fracture: A Network Meta-Analysis of Individual Treatment Modalities. J Orthop Trauma. 2024 Jul 1;38(7):e257–66.
12. Hu C, Qiu B, Cen C, Luo Q, Cao Y. 3D printing assisted MIPO for treatment of complex middle-proximal humeral shaft fractures. BMC Musculoskelet Disord. 2024 Jan 24;25(1):93.
13. Jiamton C, Rungchamrussopa P, Taweekitikul P, Leelasestaporn T, Anantasinkul P, Apivatthakakul T. Lateral minimally invasive plate osteosynthesis (MIPO) with long PHILOS for proximal metaphyseal-diaphyseal humeral fracture: surgical techniques and a clinical series. Eur J Orthop Surg Traumatol Orthop Traumatol. 2024 Jan;34(1):689–97.
14. Marinescu R, Popescu D, Laptoiu D. A Review on 3D-Printed Templates for Precontouring Fixation Plates in Orthopedic Surgery. J Clin Med. 2020 Sep 9;9(9):2908.
15. Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Transl. 2023 Sep 1;42:94–112.
16. Liang H, Chen B, Duan S, Yang L, Xu R, Zhang H, et al. Treatment of complex limb fractures with 3D printing technology combined with personalized plates: a retrospective study of case series and literature review. Front Surg. 2024;11:1383401.
17. Clinical Efficacy of Three-Dimensional-Printed Pure Titanium Fracture Plates with Locking Screw Systems in Distal Tibia Fractures - PubMed [Internet]. [cited 2025 Dec 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/39859118/
18. Wu J, Zhang L, Shen C, Wang X, Zhou X. Comparative 3D finite element analysis of intramedullary fixation versus locking plate fixation in calcaneal fractures using micro-CT image technology. BMC Musculoskelet Disord. 2024 Dec 19;25(1):1044.
19. Ram PR, Jeyaraman M, Jeyaraman N, Yadav S, Venkatasalam R. Revolutionizing Orthopedic Healthcare: The Role of Robotics. Cureus. 2023 Sep;15(9):e44820.
20. Schuijt HJ, Hundersmarck D, Smeeing DPJ, van der Velde D, Weaver MJ. Robot-assisted fracture fixation in orthopaedic trauma surgery: a systematic review. OTA Int. 2021 Oct 5;4(4):e153.
21. Wang M, Zheng S, Zhang Y, Lu J. Analysis of the therapeutic efficacy of robot-assisted percutaneous screw fixation in the minimally invasive treatment of pelvic fractures. Front Surg. 2024;11:1392719.
22. Shen Z, Liu Z, Shen C, Mo Z, Chen Y, Guo Y, et al. Long-term outcome of robotic-guided closed reduction internal fixation for Delbet II femoral neck fractures in children. J Orthop Surg. 2024 Sep 6;19:543.
23. Jing Y, Chang L, Cong B, Wang J, Chen M, Tang Z, et al. Preoperative 3D printing planning technology combined with orthopedic surgical robot-assisted minimally invasive screw fixation for the treatment of pelvic fractures: a retrospective study. PeerJ. 2024;12:e18632.
24. Wu Z, Dai Y, Zeng Y. Intelligent robot-assisted fracture reduction system for the treatment of unstable pelvic fractures. J Orthop Surg. 2024 Apr 30;19(1):271.
25. Taghipour S, Vakili-Tahami F, Allahverdizadeh A. Optimum design of a biodegradable implant for femoral shaft fracture fixation using finite element method. Phys Eng Sci Med. 2025 Sep;48(3):999–1014.
26. Ma TL, Zhou C, Qi GB, Jiang C, Jiang ZX, Wang X, et al. Ability of magnesium implants to remodel the osteoporotic immune microenvironment in a murine femoral fracture model. Rare Met. 2025;44(8):5672–88.
27. Montufar EB. Bone Response to Biodegradable Metals and In Vitro Evaluation of the Cytocompatibility. JOM. 2025 Jun 1;77(6):4473–92.
28. Jin B, Zhang C, Zhong Z, Liu Z, Zhang Z, Li D, et al. A novel degradable PCL/PLLA strapping band for internal fixation of fracture. J Mater Sci Mater Med. 2023;34(11):57.
29. Leonhardt H, Matschke JB, Sembdner P, Seidler A, McLeod NMH, Bräuer C, et al. Functional and three-dimensional radiographic outcomes after open reduction and internal fixation of condylar head fractures using magnesium alloy cannulated screws - a retrospective long-term follow-up. Clin Oral Investig. 2025 Sep 29;29(10):479.
30. Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, et al. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng. 2023 Sep 11;9(9):5222–54.
31. Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater. 2022 Sep 26;13(4):164.
32. Gailani G, Moumni R, Brahimi M. Contact Analysis for Coupling of Plates and Screws in Fracture Fixation of Cortical Bone. Adv Res. 2015 Jan 10;4:94–101.
33. Fu R, Zhao X, Liu Y, Qiao A, Yang H. An In Silico Model to Examine the Interaction Between Implant Degradation and Fracture Healing Under Mechanical Loading. Ann Biomed Eng. 2025 Aug;53(8):1919–30.
34. Egerci OF, Dogruoz F, Cetin H, Ertan MB, Yapar A, Kose O. High rate of failure after magnesium bioabsorbable compression screw fixation for scaphoid fractures. J Orthop Surg. 2025 Mar 19;20(1):296.
35. Yang Y, Ma X. Clinical efficacy analysis of one-stage posterior debridement, bone graft fusion, and internal fixation for the treatment of lumbar brucellosis spondylitis. BMC Surg. 2025 Aug 25;25(1):391.
36. Bhatti M, Malik J, Suleman H, Hussain S, Habib M, Nazir I, et al. Comparison of Volar Plating and Percutaneous K-Wire Fixation in Distal Radius Fractures. Indus J Biosci Res. 2025 Sep 15;3:5–9.
37. Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS Omega. 2023 Jul 26;8(31):27920–31.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jan Haraj, Maciej Bieniek, Marcin Sobkowiak, Sandra Dachowska, Kinga Woźniak, Maria Namysł, Simon Matczak, Aleksandra Fałczyńska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 26
Number of citations: 0