Increasing Role of Robotic-assisted Surgery in Children: Literature Review
DOI:
https://doi.org/10.12775/JEHS.2025.86.66908Keywords
Robotic-assisted surgery, pediatric surgery, Pyeloplasty, ureteral reimplantation, image-guided surgery, da Vinci surgical systemAbstract
Robotic-assisted surgery has significantly transformed pediatric surgery by enhancing the precision and ergonomics of minimally invasive procedures led to improved outcomes, particularly in complex reconstructive operations. This narrative review evaluates the current landscape, clinical outcomes, technological developments, and broader considerations associated with robotic surgery in children with pediatric urology representing the most developed and well-documented domain of its application. A comprehensive literature search was conducted across PubMed, MEDLINE, and Google Scholar between December 7–10, 2024. Studies involving patients under 18 years, published from 2020 to 2024, were included. After screening 93 articles, 47 met the inclusion criteria and were analyzed for clinical effectiveness, complications, operative metrics, and broader implications. Pyeloplasty and ureteral reimplantation emerged as the most common robotic procedures, demonstrating high success rates and low complication rates. Emerging applications include complex reconstructions, salvage procedures, and image-guided surgery with indocyanine green fluorescence. New robotic platforms, such as single-port systems, aim to improve ergonomics and adaptability for pediatric anatomy, although cost and regulatory barriers persist. Robotic surgery in children offers consistently favorable clinical outcomes with growing procedural diversity. While barriers such as costs and limited pediatric-specific tools remain, innovation and high-volume practices suggest a promising trajectory. Broader adoption will require multicenter prospective trials, standardized reporting, pediatric-specific instrumentation, and cost-reduction strategies.
References
1. Meininger D, Byhahn C, Heller K, et al. Totally endoscopic Nissen fundoplication with a robotic system in a child. Surg Endosc. 2001;15(12):1360. doi:10.1007/s00464-001-4200-3
2. Fuchs ME, DaJusta DG. Robotics in pediatric urology. Int Braz J Urol. 2020;46(3):322–7. doi:10.1590/S1677-5538.IBJU.2020.99.03.
3. Salkini MW. Robotic surgery in pediatric urology. Urol Ann. 2022;14(4):314–6. doi:10.4103/ua.ua_36_22.
4. Mei H, Tang S. Robotic-assisted surgery in the pediatric surgeons' world: current situation and future prospectives. Front Pediatr. 2023;11:1120831. doi:10.3389/fped.2023.1120831.
5. Bindi E, Todesco C, Nino F, Torino G, Gentilucci G, Cobellis G. Robotic surgery: is there a possibility of increasing its application in pediatric settings? A single-center experience. Children (Basel). 2022;9(7):1021. doi:10.3390/children9071021.
6. Boscarelli A, Giglione E, Caputo MR, Guida E, Iaquinto M, Scarpa MG, et al. Robotic-assisted surgery in pediatrics: what is evidence-based? A literature review. Transl Pediatr. 2023;12(2):271–9. doi:10.21037/tp-22-338.
7. Shen LT, Tou J. Application and prospects of robotic surgery in children: a scoping review. World J Pediatr Surg. 2022;5(4):e000482. doi:10.1136/wjps-2022-000482.
8. Soto Beauregard C, Rodríguez de Alarcón García J, Domínguez Amillo EE, Gómez Cervantes M, Ávila Ramírez LF. Implementing a pediatric robotic surgery program: future perspectives. Cir Pediatr. 2022;35(4):187–95. doi:10.54847/cp.2022.04.19.
9. Saxena AK, Borgogni R, Escolino M, D'Auria D, Esposito C. Narrative review: robotic pediatric surgery—current status and future perspectives. Transl Pediatr. 2023;12(10):1875–86. doi:10.21037/tp-22-427.
10. Hou SW, Xing MH, Gundeti MS. Pediatric robotic urologic procedures: indications and outcomes. Indian J Urol. 2023;39(2):107–20. doi:10.4103/iju.iju_276_22.
11. Krebs TF, Schnorr I, Heye P, Häcker FM. Robotically assisted surgery in children—a perspective. Children (Basel). 2022;9(6):839. doi:10.3390/children9060839.
12. Masieri L, Sforza S, Grosso AA, Valastro F, Tellini R, Cini C, et al. Robot-assisted laparoscopic pyeloplasty in children: a systematic review. Minerva Urol Nefrol. 2020;72(6):673–90. doi:10.23736/S0393-2249.20.03854-0.
13. González ST, Rosito TE, Tur AB, Ruiz J, Gozalbez R, Maiolo A, et al. Multicenter comparative study of open, laparoscopic, and robotic pyeloplasty in the pediatric population for the treatment of ureteropelvic junction obstruction (UPJO). Int Braz J Urol. 2022;48(6):961–8. doi:10.1590/S1677-5538.IBJU.2022.0194.
14. Esposito C, Cerulo M, Lepore B, Coppola V, D'Auria D, Esposito G, et al. Robotic-assisted pyeloplasty in children: a systematic review of the literature. J Robot Surg. 2023;17(4):1239–46. doi:10.1007/s11701-023-01559-1.
15. Vidhya T, Rajiv P, Sripathi V. Analysis of outcomes of robot-assisted laparoscopic pyeloplasty in children from a tertiary pediatric center in South India. Front Pediatr. 2024;12:1376644. doi:10.3389/fped.2024.1376644.
16. Kang SK, Jang WS, Kim SH, Kim SW, Han SW, Lee YS. Comparison of intraoperative and short-term postoperative outcomes between robot-assisted laparoscopic multi-port pyeloplasty using the da Vinci Si system and single-port pyeloplasty using the da Vinci SP system in children. Investig Clin Urol. 2021;62(5):592–9. doi:10.4111/icu.20200569.
17. Lai A, Shannon R, Rosoklija I, Johnson EK, Gong EM, Chu DI, et al. Robot-assisted laparoscopic pyeloplasty: experience of a single pediatric institution, including long-term and safety outcomes. Urology. 2023;176:167–70. doi:10.1016/j.urology.2022.12.070.
18. Broch A, Paye-Jaouen A, Bruneau B, Glenisson M, Taghavi K, Botto N, et al. Day surgery in children undergoing retroperitoneal robot-assisted laparoscopic pyeloplasty: is it safe and feasible? Eur Urol Open Sci. 2023;51:55–61. doi:10.1016/j.euros.2023.03.004.
19. Wong YS, Pang KKY, Tam YH. Comparing robot-assisted laparoscopic pyeloplasty vs. laparoscopic pyeloplasty in infants aged 12 months or less. Front Pediatr. 2021;9:647139. doi:10.3389/fped.2021.647139.
20. Abdulfattah S, Zirel L, Mittal S, Srinivasan A, Shukla AR. The missed crossing vessel during open pyeloplasty: a potential advantage of the robot-assisted approach in children. J Robot Surg. 2024;18(1):285. doi:10.1007/s11701-024-02006-5.
21. Alqarni NH, Alyami FA, Alshayie MA, Abduldaem AM, Sultan M, Almaiman SS, et al. Minimally invasive versus open pyeloplasty in pediatric population: comparative retrospective study in tertiary centre. Urol Ann. 2024;16(3):215–7. doi:10.4103/ua.ua_101_23.
22. Pérez-Marchán M, Pérez-Brayfield M. Comparison of laparoscopic pyeloplasty vs. robot-assisted pyeloplasty for the management of ureteropelvic junction obstruction in children. Front Pediatr. 2022;10:1038454. doi:10.3389/fped.2022.1038454.
23. Castagnetti M, Iafrate M, Esposito C, Subramaniam R. Searching for the least invasive management of pelvi-ureteric junction obstruction in children: a critical literature review of comparative outcomes. Front Pediatr. 2020;8:252. doi:10.3389/fped.2020.00252.
24. Blanc T, Abbo O, Vatta F, Grosman J, Marquant F, Elie C, et al. Transperitoneal versus retroperitoneal robotic-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction in children: a multicentre, prospective study. Eur Urol Open Sci. 2022;41:134–40. doi:10.1016/j.euros.2022.05.009.
25. Essamoud S, Ghidini F, Andolfi C, Gundeti MS. Robot-assisted laparoscopic extravesical ureteral reimplantation (RALUR-EV): a narrative review. Transl Pediatr. 2024;13(9):1634–40. doi:10.21037/tp-23-336.
26. He Y, Lin S, Xu X, He S, Xu H, You G, et al. Single-port-plus-one robot-assisted laparoscopic modified Lich-Gregoir direct nipple ureteral extravesical reimplantation in children with a primary obstructive megaureter. Front Pediatr. 2023;11:1238918. doi:10.3389/fped.2023.1238918.
27. Sforza S, Marco BB, Haid B, Baydilli N, Donmez MI, Spinoit AF, et al. A multi-institutional European comparative study of open versus robotic-assisted laparoscopic ureteral reimplantation in children with high-grade (IV–V) vesicoureteral reflux. J Pediatr Urol. 2024;20(2):283–91. doi:10.1016/j.jpurol.2023.11.006.
28. Esposito C, Masieri L, Carraturo F, Chiodi A, Di Mento C, Esposito G, et al. Robotic management of complex obstructive megaureter needing ureteral dismembering and/or tapering in children: a single-center case series. Medicina (Kaunas). 2024;60(11):1837. doi:10.3390/medicina60111837.
29. Esposito C, Di Mento C, Cerulo M, Del Conte F, Tedesco F, Coppola V, et al. Robot-assisted extravesical ureteral reimplantation (REVUR) in pediatric patients: a new standard of treatment for patients with VUR—a narrative review. Children (Basel). 2024;11(9):1117. doi:10.3390/children11091117.
30. Ansari MS, Yadav P, Chakraborty A, Shandilya G, Karunakaran PK, Pathak A, et al. Robot-assisted Foley Tie ureteric tapering and reimplantation. J Indian Assoc Pediatr Surg. 2024;29(2):98–103. doi:10.4103/jiaps.jiaps_131_23.
31. Upasani A, Mariotto A, Eassa W, Subramaniam R. Robot-assisted reconstructive surgery of lower urinary tract in children: a narrative review on technical aspects and current literature. Transl Pediatr. 2023;12(8):1540–51. doi:10.21037/tp-22-533.
32. Adamic B, Kirkire L, Andolfi C, Labbate C, Aizen J, Gundeti M. Robot-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy in children: step-by-step and modifications to UChicago technique. BJUI Compass. 2020;1(1):32–40. doi:10.1002/bco2.7.
33. Juul N, Persad E, Willacy O, Thorup J, Fossum M, Reinhardt S. Robot-assisted vs. open appendicovesicostomy in pediatric urology: a systematic review and single-center case series. Front Pediatr. 2022;10:908554. doi:10.3389/fped.2022.908554.
34. Ramos Rodríguez P, Rodríguez de Alarcón J, Ávila Ramírez F, Domínguez Amillo E, Gómez Cervantes M, Galante Romo I, et al. Purely robotic ileocystoplasty in children: why not? First case in Spain. Cir Pediatr. 2024;37(2):93–8. doi:10.54847/cp.2024.02.20.
35. Adamic BL, Lombardo A, Andolfi C, Hatcher D, Gundeti MS. Pediatric robotic-assisted laparoscopic ureterocalycostomy: salient tips and technical modifications for optimal repair. BJUI Compass. 2020;2(1):53–7. doi:10.1002/bco2.53.
36. Esposito C, Blanc T, Patkowski D, Lopez PJ, Masieri L, Spinoit AF, et al. Laparoscopic and robot-assisted ureterocalicostomy for treatment of primary and recurrent pelvi-ureteric junction obstruction in children: a multicenter comparative study with laparoscopic and robot-assisted Anderson-Hynes pyeloplasty. Int Urol Nephrol. 2022;54(10):2503–9. doi:10.1007/s11255-022-03305-2.
37. Esposito C, Settimi A, Del Conte F, Cerulo M, Coppola V, Farina A, et al. Image-guided pediatric surgery using indocyanine green (ICG) fluorescence in laparoscopic and robotic surgery. Front Pediatr. 2020;8:314. doi:10.3389/fped.2020.00314.
38. Esposito C, Masieri L, Cerulo M, Castagnetti M, Del Conte F, Di Mento C, et al. Indocyanine green (ICG) fluorescence technology in pediatric robotic surgery. J Robot Surg. 2024;18(1):209. doi:10.1007/s11701-024-01968-w.
39. Batra NV, Dangle P. A review of robotic-assisted laparoscopic partial nephrectomy in the management of renal duplication anomalies. Front Surg. 2024;11:1364246. doi:10.3389/fsurg.2024.1364246.
40. Esposito C, Leva E, Castagnetti M, Cerulo M, Cardarelli M, Del Conte F, et al. Robotic-assisted versus conventional laparoscopic ICG-fluorescence lymphatic-sparing Palomo varicocelectomy: a comparative retrospective study of techniques and outcomes. World J Urol. 2024;42(1):215. doi:10.1007/s00345-024-04909-2.
41. Reinhardt S, Thorup J, Joergensen PH, Fode M. Robot-assisted laparoscopic varicocelectomy in a pediatric population. Pediatr Surg Int. 2023;39(1):202. doi:10.1007/s00383-023-05488-w.
42. Grammens J, Schechter MY, Desender L, Claeys T, Sinatti C, VandeWalle J, et al. Pediatric challenges in robot-assisted kidney transplantation. Front Surg. 2021;8:649418. doi:10.3389/fsurg.2021.649418.
43. Arney LA, Bissette RG, Smith JM, Bayne CE. Implementation and utility of the Da Vinci SP (single port) in pediatric urology. Curr Urol Rep. 2024;26(1):8. doi:10.1007/s11934-024-01231-7.
44. Holzer J, Beyer P, Schilcher F, Poth C, Stephan D, von Schnakenburg C, et al. First pediatric pyeloplasty using the Senhance® robotic system—a case report. Children (Basel). 2022;9(3):302. doi:10.3390/children9030302.
45. Brownlee EM, Slack M. The role of the Versius surgical robotic system in the paediatric population. Children (Basel). 2022;9(6):805. doi:10.3390/children9060805.
46. Khater N, Swinney S, Fitz-Gerald J, Abdelrazek AS, Domingue NM, Shekoohi S, et al. Robotic pediatric urologic surgery—clinical anesthetic considerations: a comprehensive review. Anesth Pain Med. 2024;14(3):e146438. doi:10.5812/aapm-146438.
47. Wakimoto M, Michalsky M, Nafiu O, Tobias J. Anesthetic implications of robotic-assisted surgery in pediatric patients. Robot Surg. 2021;8:9–19. doi:10.2147/RSRR.S308185.
48. Zhang TR, Castle E, Zhao LC. What pediatric robotic surgery since 2000 suggests about ethics, limits, and innovation. AMA J Ethics. 2023;25(8):E637–42. doi:10.1001/amajethics.2023.637.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aleksander Małachowski, Jakub Wójcik, Ewa Błaszczak, Bartłomiej Wójcik, Oskar Mikołajczyk, Aleksandra Suchołbiak, Hubert Jucha, Katarzyna Żak, Julia Sałata

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 31
Number of citations: 0