The neuroprotective potential of GLP-1 analogues with particular emphasis in Alzheimer’s and Parkinson’s diseases
DOI:
https://doi.org/10.12775/JEHS.2025.86.66890Keywords
GLP-1 receptor agonists, Alzheimer's disease, Parkinson's disease, neurodegeneration, neuroprotection, lixisenatide, cognitive functionAbstract
Background: Alzheimer's and Parkinson's diseases are becoming more common as populations age, yet effective treatments remain elusive. People with type 2 diabetes face higher risks of developing these conditions, prompting researchers to explore whether diabetes medications might protect the brain. GLP-1 receptor agonists have emerged as promising candidates for this purpose.
Aim: This systematic review evaluates the neuroprotective potential of GLP-1 analogues in treating Alzheimer's and Parkinson's diseases, examining clinical evidence and underlying molecular mechanisms.
Material and methods: A systematic literature search was conducted using PubMed, focusing on studies published from 2020 onwards. Search terms combined GLP-1 receptor agonists with neurodegenerative and neuroprotective terminology. From 38 initially identified articles, 5 studies were selected for detailed analysis based on their focus on GLP-1 analogues' therapeutic potential in neurodegeneration.
Results: The LIXIPARK trial demonstrated promising results in early Parkinson's disease, with lixisenatide showing significant benefits on motor symptom progression compared to placebo. However, evidence for Alzheimer's disease remains mixed, with smaller completed studies yielding disappointing outcomes while large-scale EVOKE trials are ongoing. In type 2 diabetes patients, liraglutide enhanced cognitive function and hippocampal activation, though DPP-4 inhibition showed no superior cognitive protection versus traditional diabetes medications.
Conclusions: GLP-1 receptor agonists show genuine promise as neuroprotective agents, with strongest evidence emerging from Parkinson's disease research. The therapeutic potential in Alzheimer's disease requires confirmation from ongoing large-scale trials. These findings suggest that personalized approaches considering disease stage, gender, and metabolic status may optimize therapeutic benefits.
References
al Qassab, M., Mneimneh, M., Jradi, A., Derbas, B., Dabboussi, D., Khoury Baini, J., Katrib, N., Chaarani, N., Attieh, P., Kanaan, A., Harb, F., Azar, S., & Ghadieh, H. E. (2025). The Expanding Role of GLP-1 Receptor Agonists: Advancing Clinical Outcomes in Metabolic and Mental Health. Current Issues in Molecular Biology, 47(4). https://doi.org/10.3390/cimb47040285
Bayram, E., & Litvan, I. (2020). Lowering the risk of Parkinson's disease with GLP-1 agonists and DPP4 inhibitors in type 2 diabetes. Brain, 143(10), 2868–2871. https://doi.org/10.1093/brain/awaa287
Biessels, G. J., Verhagen, C., Janssen, J., van den Berg, E., Zinman, B., Rosenstock, J., George, J. T., Passera, A., Schnaidt, S., Johansen, O. E., & CAROLINA Investigators. (2021). Effects of linagliptin vs glimepiride on cognitive performance in type 2 diabetes: results of the randomised double-blind, active-controlled CAROLINA-COGNITION study. Diabetologia, 64(5), 1235–1245. https://doi.org/10.1007/s00125-021-05393-8
Blázquez, E., Hurtado-Carneiro, V., LeBaut-Ayuso, Y., Velázquez, E., García-García, L., Gómez-Oliver, F., Ruiz-Albusac, J. M., Ávila, J., & Pozo, M. Á. (2022). Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.873301
Cheng, B., Yang, J., Cai, R., Zhou, H., Xu, Y., Sun, C., He, Q., Pan, J., Chen, W., Fang, Q., Gu, H., & Gao, F. (2022). Enhancement of Impaired Olfactory Neural Activation and Cognitive Capacity by Liraglutide, but Not Dapagliflozin or Acarbose, in Patients With Type 2 Diabetes: A 16-Week Randomized Parallel Comparative Study. Diabetes Care, 45(9), 2090–2100. https://doi.org/10.2337/dc21-2064
Chuansangeam, M., Phadungsaksawasdi, P., Park, H. J., & Yang, Y.-H. (2025). Exploring the link between GLP-1 receptor agonists and dementia: A comprehensive review. Journal of Alzheimer's Disease Reports, 9. https://doi.org/10.1177/25424823251342182
Cullinane, P. W., de Pablo Fernandez, E., König, A., Outeiro, T. F., Jaunmuktane, Z., & Warner, T. T. (2023). Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Movement Disorders, 38(2), 162–177. https://doi.org/10.1002/mds.29298
Cummings, J., Hamann, G. F., Aarsland, D., Bråthen, G., Vigen, C., Barrett, N. J., Cummings, B., Tummolo, A. M., Berent-Spillson, A., Sjöström, C. D., Ericsson, Å., Hey-Hadavi, J., & Buse, J. B. (2025). EVOKE and EVOKE+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer's disease. Alzheimer's Research & Therapy, 17(1). https://doi.org/10.1186/s13195-024-01666-7
de Giorgi, R., Ghenciulescu, A., Yotter, C., Taquet, M., & Koychev, I. (2025). Glucagon-like peptide-1 receptor agonists for major neurocognitive disorders. Journal of Neurology, Neurosurgery and Psychiatry. https://doi.org/10.1136/jnnp-2024-335593
Dei Cas, A., Spigoni, V., Cito, M., Aldigeri, R., Ridolfi, V., Ziveri, V., Baccarini, F., Antenucci, P., Orso, M., Rinaldi, E., Voltini, L., Gnudi, L., Dall'Asta, M., Brighenti, F., Zavaroni, I., Riccardi, G., Bonadonna, R. C., & Derlindati, E. (2024). Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. Journal of Endocrinological Investigation, 47(5), 1121–1129. https://doi.org/10.1007/s40618-024-02320-7
Diz-Chaves, Y., Mastoor, Z., Spuch, C., González-Matías, L. C., & Mallo, F. (2022). Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms23179583
Dou, X., Zhao, L., Li, J., & Jiang, Y. (2025). Effect and mechanism of GLP-1 on cognitive function in diabetes mellitus. Frontiers in Neuroscience, 19. https://doi.org/10.3389/fnins.2025.1537898
Du, H., Meng, X., Yao, Y., & Xu, J. (2022). The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.1033479
Hammad, B. F., Zafar, N., Ullah, M., Faisal, S. J., Iftikhar, F., Waheed, H., Muzaffar, M. W., Ahmed, K., Ashraf, F., Zahid, K., Akhtar, M., & Mahmmoud Fadelallah Eljack, M. (2025). Exploring the multifaceted roles of GLP-1 receptor agonists; a comprehensive review. Frontiers in Clinical Diabetes and Healthcare, 6. https://doi.org/10.3389/fcdhc.2025.1590530
Helal, M. M., AbouShawareb, H., Abbas, O. H., Haddad, R., Zain, Y., Osman, A. S. A., & Hassan, A. K. (2025). GLP-1 receptor agonists in Parkinson's disease: an updated comprehensive systematic review with meta-analysis. Diabetology and Metabolic Syndrome, 17(1). https://doi.org/10.1186/s13098-025-01888-1
Hölscher, C. (2020). Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opinion on Investigational Drugs, 29(4), 333–348. https://doi.org/10.1080/13543784.2020.1738383
Hong, C. T., Chen, J. H., & Hu, C. J. (2024). Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. Journal of Biomedical Science, 31(1). https://doi.org/10.1186/s12929-024-01090-x
Jasińska-Balwierz, A., Balwierz, R. J., Biernat, P., Makieieva, N., Tomkow, M., Cesarz, K., Osowski, M., Dorożyński, B., Skotnicka-Graca, U., & Lipok, J. (2024). GLP-1 and GIP analogues in the treatment of obesity. Pediatria i Medycyna Rodzinna, 20(2), 162–167. https://doi.org/10.15557/PiMR.2024.0023
Kalinderi, K., Papaliagkas, V., & Fidani, L. (2024). GLP-1 Receptor Agonists: A New Treatment in Parkinson's Disease. International Journal of Molecular Sciences, 25(7). https://doi.org/10.3390/ijms25073812
Manfready, R. A., Engen, P. A., Verhagen Metman, L., Sanzo, G., Goetz, C. G., Hall, D. A., Forsyth, C. B., Raeisi, S., Voigt, R. M., & Keshavarzian, A. (2021). Attenuated Postprandial GLP-1 Response in Parkinson's Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.660942
Marquez-Meneses, J. D., Olaya-Bonilla, S. A., Barrera-Carreño, S., Tibaduiza-Arévalo, L. C., Forero-Cárdenas, S., Carrillo-Vaca, L., Rojas-Rodríguez, L. C., Calderon-Ospina, C. A., & Rodríguez-Quintana, J. (2025). GLP-1 Analogues in the Neurobiology of Addiction: Translational Insights and Therapeutic Perspectives. International Journal of Molecular Sciences, 26(11). https://doi.org/10.3390/ijms26115338
Meissner, W. G., Remy, P., Giordana, C., Maltête, D., Derkinderen, P., Houéto, J.-L., Anheim, M., Benatru, I., Boraud, T., Brefel-Courbon, C., Carrière, N., Catala, H., Colin, O., Corvol, J.-C., Damier, P., Dellapina, E., Devos, D., Drapier, S., Fabbri, M., … Rascol, O. (2024). Trial of Lixisenatide in Early Parkinson's Disease. New England Journal of Medicine, 390(13), 1176–1185. https://doi.org/10.1056/nejmoa2312323
Nowell, J., Blunt, E., Gupta, D., & Edison, P. (2023). Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Research Reviews, 89. https://doi.org/10.1016/j.arr.2023.101979
Reich, N., & Hölscher, C. (2022). The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.970925
Ribarič, S. (2024). The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. International Journal of Molecular Sciences, 25(8). https://doi.org/10.3390/ijms25084358
Roy, A., Dawson, V. L., & Dawson, T. M. (2025). From metabolism to mind: The expanding role of the GLP-1 receptor in neurotherapeutics. Neurotherapeutics. https://doi.org/10.1016/j.neurot.2025.e00712
Sun, H., Hao, Y., Liu, H., & Gao, F. (2025). The immunomodulatory effects of GLP-1 receptor agonists in neurogenerative diseases and ischemic stroke treatment. Frontiers in Immunology, 16. https://doi.org/10.3389/fimmu.2025.1525623
Sun, M., Wang, X., Lu, Z., Yang, Y., Lv, S., Miao, M., Chen, W. M., Wu, S. Y., & Zhang, J. (2025). Evaluating GLP-1 receptor agonists versus metformin as first-line therapy for reducing dementia risk in type 2 diabetes. BMJ Open Diabetes Research and Care, 13(4). https://doi.org/10.1136/bmjdrc-2025-004902
Tang, H., Donahoo, W. T., DeKosky, S. T., Lee, Y. A., Svensson, M., Bian, J., & Guo, J. (2025). Glycated hemoglobin and body mass index as mediators of GLP-1RAs and Alzheimer's disease and related dementias in patients with type 2 diabetes. Alzheimer's and Dementia, 21(4). https://doi.org/10.1002/alz.70161
Urkon, M., Ferencz, E., Szász, J. A., Szabo, M. I. M., Orbán-Kis, K., Szatmári, S., & Nagy, E. E. (2025). Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer's Disease. Pharmaceuticals, 18(5). https://doi.org/10.3390/ph18050614
Yu, H.-Y., Sun, T., Wang, Z., Li, H., Xu, D., An, J., Wen, L.-L., Li, J.-Y., Li, W., & Feng, J. (2022). Exendin-4 and linagliptin attenuate neuroinflammation in a mouse model of Parkinson′s disease. Neural Regeneration Research, 0(0), 0. https://doi.org/10.4103/1673-5374.360242
Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., Xue, H., Liu, Y., & Zhang, Y. (2021). GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.721135
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zuzanna Drozd, Natalia Dudziak, Bartosz Niemiec, Szymon Piosik, Bruno Olesiński, Łukasz Piasecki, Zuzanna Guzowicz, Gągałka Patrycja, Monika Kamińska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 87
Number of citations: 0