Vitamins A and C as radiotherapy adjuncts - literature review of preclinical and clinical evidence
DOI:
https://doi.org/10.12775/JEHS.2025.83.66889Keywords
Radiotherapy, radiation, vitamin A, retinol, β-carotene, α-carotene, β-cryptoxanthin, ascorbic acid, radiosensitivityAbstract
Introduction: Radiotherapy (RT) is a cornerstone in cancer treatment, but its success is often hindered by tumor radioresistance and normal tissue toxicity. Vitamins A and C are being investigated as potential adjuvants to modulate RT outcomes through radiosensitizing, radioprotective, and immune-regulatory mechanisms.
Methods and Materials: We reviewed preclinical and clinical studies from PubMed, ScienceDirect, ResearchGate, and Google Scholar using keywords like “radiotherapy”, ”radiation”, “vitamin A”, “vitamin C”, “retinol”, “β-carotene”, “α-carotene”, “β-cryptoxanthin”, “ascorbic acid” and “radiosensitivity”.
Results: Vitamin A, particularly all-trans retinoic acid (ATRA), enhances radiosensitivity by promoting immune-mediated tumor regression, impairing DNA repair in cancer stem cells, and reducing radiation-induced normal tissue damage. However, clinical data on β-carotene suggest potential risks, including increased recurrence in some populations (e.g., smokers). Vitamin C shows dose-dependent effects: at physiological levels, it protects normal tissues via antioxidant activity, while at pharmacological intravenous doses, it selectively sensitizes tumors through pro-oxidant mechanisms. Clinical trials indicate potential for mitigating RT toxicity, such as improved xerostomia, but evidence is currently limited.
Conclusions: Vitamins A and C may enhance the therapeutic ratio of radiotherapy via distinct biological mechanisms. However, their clinical use requires careful consideration of dose, timing, and patient-specific factors. Further research through well-designed trials is needed to establish optimal protocols and identify which patients are most likely to benefit.
References
1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi:10.3322/caac.21871
2. Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of Tumor Eradication. Front Cell Dev Biol. 2020;8:261. Published 2020 Apr 24. doi:10.3389/fcell.2020.00261
3. Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci). 2018;6(3–4):79–100. doi:10.1142/S2339547818300020
4. Giulietti A. Laser-driven particle acceleration for radiobiology and radiotherapy. In: Proceedings of SPIE 10239, Medical Applications of Laser-Generated Beams of Particles IV; 2017:1023904. doi:10.1117/12.2270945.
5. Guo Z, Lei L, Zhang Z, Du M, Chen Z. The potential of vascular normalization for sensitization to radiotherapy. Heliyon. 2024;10(12):e32598. Published 2024 Jun 8. doi:10.1016/j.heliyon.2024.e32598
6. Kumari N, Raghavan SC. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj. 2021;1865(5):129857. doi:10.1016/j.bbagen.2021.129857
7. Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy [published correction appears in Int J Nanomedicine. 2021 Dec 16;16:8139-8140. doi: 10.2147/IJN.S352169.]. Int J Nanomedicine. 2021;16:1083-1102. Published 2021 Feb 12. doi:10.2147/IJN.S290438
8. Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24-48. doi:10.1016/j.tips.2017.11.003
9. Conti V, Polcaro G, De Bellis E, et al. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med. 2024;14(7):685. Published 2024 Jun 26. doi:10.3390/jpm14070685
10. Kabakov, A.E.; Yakimova, A.O. Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers 2021, 13, 1102.
11. Liu, Y.; Zheng, C.; Huang, Y.; He, M.; Xu, W.W.; Li, B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340.
12. Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020, 9, 1651.
13. Du M, Luo H, Blumberg JB, et al. Dietary Supplement Use among Adult Cancer Survivors in the United States. J Nutr. 2020;150(6):1499-1508. doi:10.1093/jn/nxaa040
14. Song, S., Youn, J., Lee, Y. J., Kang, M., Hyun, T., Song, Y., & Lee, J. E. (2017). Dietary Supplement Use Among Cancer Survivors and the General Population: A Nation-Wide Cross-Sectional Study. BMC Cancer, 17, 891.
15. Kamian S, Mafi AR. Use of dietary supplements in cancer: a single-institution study. Rep Radiother Oncol. 2018;5(1):e79566. doi:10.5812/rro.79566.
16. Hauner D, Mang A, Donik L, et al. Dietary supplement intake in women with breast cancer before and after diagnosis: results from the SUCCESS C trial. BMC Cancer. 2024;24(1):591. Published 2024 May 15. doi:10.1186/s12885-024-12341-3
17. Oyunchimeg B, Hwang JH, Ahmed M, Choi S, Han D. Complementary and alternative medicine use among patients with cancer in Mongolia: a National hospital survey. BMC Complement Altern Med. 2017;17(1):58. Published 2017 Jan 19. doi:10.1186/s12906-017-1576-8
18. Lam CS, Koon HK, Loong HH, Chung VC, Cheung YT. Associations of dietary supplement use with all-cause and cause-specific mortality in patients diagnosed with cancer: a large prospective cohort study in the UK Biobank. Eur J Nutr. 2023;62(2):879-889. doi:10.1007/s00394-022-03044-1
19. Fakhoury KR, Hu J, Kim E, et al. An Integrative Medicine Educational Program for Radiation Oncology Patients: Patient-Reported Outcomes. Adv Radiat Oncol. 2023;9(2):101350. Published 2023 Aug 16. doi:10.1016/j.adro.2023.101350
20. Hauer M, Rossi AM, Wertheim BC, Kleppel HB, Bea JW, Funk JL. Dietary Supplement Use in Women Diagnosed with Breast Cancer [published correction appears in J Nutr. 2023 May;153(5):1656-1657. doi: 10.1016/j.tjnut.2023.04.008.]. J Nutr. 2023;153(1):301-311. doi:10.1016/j.tjnut.2022.12.007
21. Carazo A, Macáková K, Matoušová K, et al. Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients. 2021;13(5):1703. doi:10.3390/nu13051703
22. Rudzińska A, Juchaniuk P, Oberda J, et al. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients. 2023;15(8):1896. doi:10.3390/nu15081896
23. Blaner WS, Shmarakov IO, Traber MG. Vitamin A and vitamin E: will the real antioxidant please stand up? Annu Rev Nutr. 2021;41:105–131. doi:10.1146/annurev-nutr-082018-124228
24. Rao E, Hou Y, Huang X, et al. All-trans retinoic acid overcomes solid tumor radioresistance by inducing inflammatory macrophages. Sci Immunol. 2021;6(60):eaba8426. doi:10.1126/sciimmunol.aba8426
25. Russo M, Moccia S, Spagnuolo C, et al. Carotenoid-enriched nanoemulsions and γ-rays synergistically induce cell death in a novel radioresistant osteosarcoma cell line. Int J Mol Sci. 2022;23(24):15959. doi:10.3390/ijms232415959
26. Zheng Y, Lei Q, Jongejan A, et al. The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA Repair (Amst). 2018;70:55–66. doi:10.1016/j.dnarep.2018.08.027
27. Changizi V, Haeri SA, Abbasi S, Rajabi Z, Mirdoraghi M. Radioprotective effects of vitamin A against gamma radiation in mouse bone marrow cells. MethodsX. 2019;6:714-717. Published 2019 Apr 3. doi:10.1016/j.mex.2019.03.020
28. Zheng J, Taylor B, Dodge J, et al. Radiation and host retinoic acid signaling promote the induction of gut-homing donor T cells after allogeneic hematopoietic stem cell transplantation. Am J Transplant. 2020;20(1):64–74. doi:10.1111/ajt.15501
29. Moreb JS, Ucar D, Han S, et al. The role of retinoic acid in the regulation of ALDH1A1 and CD133 expression in lung cancer cells. Cancer Chemother Pharmacol. 2017;79(2):275–285. doi:10.1007/s00280-016-3190-5
30. Kang JH, Kim W, Seo HJ, et al. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci Rep. 2021;11:5957. doi:10.1038/s41598-021-85469-w
31. Mei D, Lv B, Chen B, et al. All-trans retinoic acid suppresses malignant characteristics of CD133-positive thyroid cancer stem cells and induces apoptosis. Oncol Lett. 2017;14(1):467–474. doi:10.3892/ol.2017.6180
32. Fu X, Ma Y, Shen Y, et al. All-trans retinoic acid eliminates radiation-induced senescent astrocytes and alleviates radiation-induced brain injury. Cell Rep Med. 2024;5(3):101218. doi:10.1016/j.xcrm.2024.101218
33. Matos A, Nogueira C, Franca C, et al. The relationship between serum vitamin A and breast cancer staging before and after radiotherapy. Nutr Hosp. 2014;29(1):136–139. doi:10.3305/nh.2014.29.1.6997
34. Rosa C, Franca C, Vieira SL, et al. Reduction of serum concentrations and synergy between retinol, β-carotene, and zinc according to cancer staging and different treatment modalities prior to radiation therapy in women with breast cancer. Nutrients. 2019;11(12):2953. doi:10.3390/nu11122953
35. Meyer F, Bairati I, Jobin E, et al. A randomized trial of antioxidant vitamins to prevent second primary cancers in head and neck cancer patients. Int J Cancer. 2006;119(9):2221–2224. doi:10.1002/ijc.22026
36. Meyer F, Bairati I, Jobin É, et al. Acute adverse effects of radiation therapy and local recurrence in relation to dietary and plasma beta carotene and alpha tocopherol in head and neck cancer patients. Nutr Cancer. 2007;59(1):29–35. doi:10.1080/01635580701397590
37. Corbi G, Scapagnini G, Davinelli S, et al. Beta-carotene supplementation and cancer mortality: A systematic review and meta-analysis. Front Med. 2022;9:872310. doi:10.3389/fmed.2022.872310
38. Bairati I, Meyer F, Gelinas M, et al. Randomized trial of antioxidant vitamins to prevent second primary cancers in head and neck cancer patients. J Natl Cancer Inst. 2005;97(7):481–488. doi:10.1093/jnci/dji069
39. Delia P, Sansotta G, Pontoriero A, et al. Clinical evaluation of low-molecular-weight hyaluronic acid-based treatment on onset of acute side effects in women receiving adjuvant radiotherapy after cervical surgery: a randomized clinical trial. Oncol Res Treat. 2019;42(3):124–130. doi:10.1159/000496124
40. Guo D, Liao Y, Na J, Wu L, Yin Y, Mi Z, Fang S, Liu X, Huang Y. The Involvement of Ascorbic Acid in Cancer Treatment. Molecules. 2024; 29(10):2295. https://doi.org/10.3390/molecules29102295
41. Islam MM, Sultana N, Liu C, Mao A, Katsube T, Wang B. Impact of dietary ingredients on radioprotection and radiosensitization: a comprehensive review. Ann Med. 2024;56(1):2396558. doi:10.1080/07853890.2024.2396558
42. Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. Phytomedicine. 2018;47:192-200. doi:10.1016/j.phymed.2017.11.005
43. Athreya K, Xavier MF. Antioxidants in the Treatment of Cancer. Nutr Cancer. 2017;69(8):1099-1104. doi:10.1080/01635581.2017.1362445
44. Ma L, Jin Y, Aili A, et al. High-dose vitamin C attenuates radiation-induced pulmonary fibrosis by targeting S100A8 and S100A9. Biochim Biophys Acta Mol Basis Dis. 2024;1870(7):167358. doi:10.1016/j.bbadis.2024.167358
45. Du J, Cieslak JA 3rd, Welsh JL, et al. Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer. Cancer Res. 2015;75(16):3314-3326. doi:10.1158/0008-5472.CAN-14-1707
46. Hosokawa Y, Saga R, Monzen S, Terashima S, Tsuruga E. Ascorbic acid does not reduce the anticancer effect of radiotherapy. Biomed Rep. 2017;6:103–7. doi:10.3892/br.2016.819
47. Maeda J, Allum AJ, Mussallem JT, Froning CE, Haskins AH, Buckner MA, Miller CD, Kato TA. Ascorbic Acid 2-Glucoside Pretreatment Protects Cells from Ionizing Radiation, UVC, and Short Wavelength of UVB. Genes. 2020; 11(3):238. https://doi.org/10.3390/genes11030238
48. Mathew D, Nair CK, Jacob JA, Biswas N, Mukherjee T, Kapoor S, Kagiya TV. Ascorbic acid monoglucoside as antioxidant and radioprotector. J Radiat Res. 2007;48:369–76.
49. Ito Y, Yamamoto T, Miyai K, et al. Ascorbic acid-2 glucoside mitigates intestinal damage during pelvic radiotherapy in a rat bladder tumor model. Int J Radiat Biol. 2022;98(5):942-957. doi:10.1080/09553002.2021.2009145
50. Yamamoto T, Kinoshita M. Radioprotective effect of vitamin C as an antioxidant. In: Vitamin C. London: IntechOpen; 2017. doi:10.5772/intechopen.68988
51. Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, et al. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 2015;10(2):e0117020. doi:10.1371/journal.pone.0117020
52. Liu B, Kuang A, Huang R, Zhao Z, Zeng Y, Wang J, Tian R. Influence of vitamin C on salivary absorbed dose of 131I in thyroid cancer patients: a prospective, randomized, single-blind, controlled trial. J Nucl Med. 2010;51(4):618–23. doi:10.2967/jnumed.109.071449.
53. Chung MK, Kim DH, Ahn YC, Choi JY, Kim EH, Son Y-I. Randomized Trial of Vitamin C/E Complex for Prevention of Radiation-Induced Xerostomia in Patients with Head and Neck Cancer. Otolaryngology–Head and Neck Surgery. 2016;155(3):423-430. doi:10.1177/0194599816642418
54. Park H, Kang J, Choi J, Heo S, Lee DH. The Effect of High Dose Intravenous Vitamin C During Radiotherapy on Breast Cancer Patients' Neutrophil-Lymphocyte Ratio. J Altern Complement Med. 2020;26(11):1039-1046. doi:10.1089/acm.2020.0138
55. Zarakowska E, Guz J, Mijewski P, Wasilow A, Wozniak J, Roszkowski K, et al. Intracellular ascorbate is a safe-guard and/or reservoir for plasma vitamin C in prostate cancer patients undergoing radiotherapy. Free Radic Biol Med. 2024;210:230–6. doi:10.1016/j.freeradbiomed.2023.11.024.
56. Yahyapour R, Shabeeb D, Cheki M, et al. Radiation Protection and Mitigation by Natural Antioxidants and Flavonoids: Implications to Radiotherapy and Radiation Disasters. Curr Mol Pharmacol. 2018;11(4):285-304. doi:10.2174/1874467211666180619125653
57. Hoppe C, Freuding M, Büntzel J, et al. Clinical efficacy and safety of oral and intravenous vitamin C use in patients with malignant diseases. J Cancer Res Clin Oncol. 2021;147:3025–42. doi:10.1007/s00432-021-03759-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maksymilian Wiśniowski, Ada Wiśniowska, Kacper Buczek, Katarzyna Kulszo, Bartłomiej Baszun, Aleksandra Kozłowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 42
Number of citations: 0