Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Viral infections as environmental factors in the pathogenesis of selected autoimmune diseases
  • Home
  • /
  • Viral infections as environmental factors in the pathogenesis of selected autoimmune diseases
  1. Home /
  2. Archives /
  3. Vol. 83 (2025) /
  4. Medical Sciences

Viral infections as environmental factors in the pathogenesis of selected autoimmune diseases

Authors

  • Artur Szafraniec Lower Silesian Centre for Oncology, Pulmonology and Haematology plac Hirszfelda 12, 53-413 Wrocław https://orcid.org/0000-0002-9991-2039
  • Dominika Szczotka 4. Military Clinical Hospital and Polyclinic IPHC Weigla 5, 53-114 Wrocław https://orcid.org/0000-0002-1689-5457
  • Olga Krężel 4. Military Clinical Hospital and Polyclinic IPHC Weigla 5, 53-114 Wrocław https://orcid.org/0009-0007-5687-3440
  • Maciej Krężel Wrocław University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław https://orcid.org/0009-0007-2670-6625

DOI:

https://doi.org/10.12775/JEHS.2025.83.66848

Keywords

autoimmunity, viral infections, molecular mimicry, autoimmune diseases, tolerogenic vaccines

Abstract

Autoimmune diseases are conditions in which the immune system loses its ability to distinguish between self and foreign antigens, leading to tissue damage and chronic inflammation. Their development is the result of the interaction of genetic, environmental, hormonal, and immunological factors. Viral infections play a particularly important role, as they can initiate autoimmunity through mechanisms such as molecular mimicry, epitope expansion, or non-specific lymphocyte activation. The viruses most commonly associated with the development of autoimmunity include Epstein-Barr virus (EBV), Coxsackie B, HHV-6, HIV, and other. Examples of diseases in which such relationships are observed include type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and psoriasis. Although standard vaccinations do not protect against the onset of autoimmune diseases, they are an important part of preventing infections that can exacerbate their course. A promising area of research is tolerogenic vaccines, which aim to restore tolerance to autoantigens. Preclinical and early clinical studies demonstrate their safety and ability to modulate the immune response, opening up new perspectives in the treatment of autoimmune diseases.

References

Aamodt, K. I., & Powers, A. C. (2025). The pathophysiology,

presentation and classification of Type 1 diabetes. Diabetes, obesity & metabolism, 27 Suppl 6(Suppl 6), 15–27. https://doi.org/10.1111/dom.16628

Albert L.J., Inman R.D. (1999). Molecular Mimicry and Autoimmunity.The New England

Journal of Medicine. 1999;341(27):2068-74. https://doi.org/10.1056/NEJM199912303412707

Aletaha D, Smolen JS. (2018). Diagnosis and Management of Rheumatoid Arthritis: A

Review.JAMA.2018;320(13):1360–1372. https://doi.org/10.1001/jama.2018.13103

Ali, F. H. M., Smatti, M. K., Elrayess, M. A., Al Thani, A. A., & Yassine, H. M. (2023). Role

of genetics in eleven of the most common autoimmune diseases in the post genome-wide association studies era. European review for medical and pharmacological sciences, 27(18), 8463–8485. https://doi.org/10.26355/eurrev_202309_33772

Armstrong AW, Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis:

A Review. JAMA. 2020;323(19):1945–1960. https://doi.org/10.1001/jama.2020.4006

Armstrong, A. W., Blauvelt, A., Callis Duffin, K., Huang, Y. H., Savage, L. J., Guo, L., &

Merola, J.F. (2025). Psoriasis. Nature reviews. Disease primers, 11(1), 45. https://doi.org/10.1038/s41572-025-00630-5

Bijl, M., Westra, J., Mancuso, S., Bearzi, P., Giacomelli, R., & Conti, F. (2024). Should we

vaccinate during an active rheumatic disease?. Autoimmunity reviews, 23(1), 103426. https://doi.org/10.1016/j.autrev.2023.103426

Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.;

Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301.

Bolouri, N., Akhtari, M., Farhadi, E., Mansouri, R., Faezi, S. T., Jamshidi, A., & Mahmoudi,

M. (2022). Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 71(5-6), 537–554. https://doi.org/10.1007/s00011-022-01554-6

Caielli, S., Wan, Z., & Pascual, V. (2023). Systemic Lupus Erythematosus Pathogenesis:

Interferon and Beyond. Annual review of immunology, 41, 533–560. https://doi.org/10.1146/annurev-immunol-101921-042422

Carré, A., Vecchio, F., Flodström-Tullberg, M., You, S., & Mallone, R. (2023).

Coxsackievirus and Type 1 Diabetes: Diabetogenic Mechanisms and Implications for Prevention. Endocrine reviews, 44(4), 737–751. https://doi.org/10.1210/endrev/bnad007

Cauwels, A., & Tavernier, J. (2020). Tolerizing Strategies for the Treatment of Autoimmune

Diseases: From ex vivo to in vivo Strategies. Frontiers in immunology, 11, 674. https://doi.org/10.3389/fimmu.2020.00674

Chen, X., Xie, Z., Wu, R., He, X., Qin, M., Wang, H., Bai, S., Chen, Z., He, C., Ou, Y., Zhao,

Y., Xie,M., Zhang, Y., Du, G., & Sun, X. (2025). Liver-Targeted Tolerogenic Vaccines: A Nano-Membrane Coupled Approach for Autoimmune Disease Therapies. Advanced materials (Deerfield Beach, Fla.), 37(35), e2507743. https://doi.org/10.1002/adma.202507743

Choy E. (2012). Understanding the dynamics: pathways involved in the pathogenesis of

rheumatoid arthritis. Rheumatology (Oxford, England), 51 Suppl 5, v3–v11. https://doi.org/10.1093/rheumatology/kes113

Cifuentes-Rius, A., Desai, A., Yuen, D., Johnston, A. P. R., & Voelcker, N. H. (2021).

Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature nanotechnology, 16(1), 37–46. https://doi.org/10.1038/s41565-020-00810-2

Conrad, N., Misra, S., Verbakel, J. Y., Verbeke, G., Molenberghs, G., Taylor, P. N., Mason, J.,

Sattar, N., McMurray, J. J. V., McInnes, I. B., Khunti, K., & Cambridge, G. (2023). Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet (London, England), 401(10391), 1878–1890. https://doi.org/10.1016/S0140-6736(23)00457-9

Danieli, M. G., Casciaro, M., Paladini, A., Bartolucci, M., Sordoni, M., Shoenfeld, Y., &

Gangemi, S. (2024). Exposome: Epigenetics and autoimmune diseases. Autoimmunity reviews, 23(6), 103584. https://doi.org/10.1016/j.autrev.2024.103584

de Ferranti, S. D., de Boer, I. H., Fonseca, V., Fox, C. S., Golden, S. H., Lavie, C. J., Magge,

S. N., Marx, N., McGuire, D. K., Orchard, T. J., Zinman, B., & Eckel, R. H. (2014). Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes care, 37(10), 2843–2863. https://doi.org/10.2337/dc14-1720

Di Matteo, A., Bathon, J. M., & Emery, P. (2023). Rheumatoid arthritis. Lancet (London,

England), 402(10416), 2019–2033. https://doi.org/10.1016/S0140-6736(23)01525-8 (4

Forum Reumatol. 2020, tom 6, nr 3, 131–138 Copyright © 2020 Via Medica ISSN 2450–3088

https://DOI.org/10.5603/FR.2020.001 (11)

Gebe, J.A.; Falk, B.A.; Rock, K.A.; Kochik, S.A.; Heninger, A.K.; Reijonen, H.; Kwok,

W.W.; Nepom, G.T. (2003). Low-avidity recognition by CD4+ T cells directed to self-antigens. Eur. J. Immunol. 2003, 33, 1409–1417. (17)

Getts, D. R., Chastain, E. M., Terry, R. L., & Miller, S. D. (2013). Virus infection, antiviral

immunity, and autoimmunity. Immunological reviews, 255(1), 197–209. https://doi.org/10.1111/imr.12091 (14)

Gómez-Bañuelos, E., Fava, A., & Andrade, F. (2023). An update on autoantibodies in

systemic lupus erythematosus. Current opinion in rheumatology, 35(2), 61–67. https://doi.org/10.1097/BOR.0000000000000922 (44)

Gravallese E.M., Firestein G.S. (2023). Rheumatoid Arthritis — Common Origins, Divergent

Mechanisms.The New England Journal of Medicine. 2023;388(6):529-542.

https://doi.org/10..1056/NEJMra2103726 (51)

Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. N. W. N. (2021).

Psoriasis. Lancet (London, England), 397(10281), 1301–1315. https://doi.org/10.1016/S0140-6736(20)32549-6 (64)

Grigoriadis, N., van Pesch, V., & ParadigMS Group (2015). A basic overview of multiple

sclerosis immunopathology. European journal of neurology, 22 Suppl 2, 3–13.

https://doi.org/10.1111/ene.12798 (59)

Hoi, A., Igel, T., Mok, C. C., & Arnaud, L. (2024). Systemic lupus erythematosus. Lancet

(London, England), 403(10441), 2326–2338. https://doi.org/10.1016/S0140-6736(24)00398-2 (39 i 47)

https://www.mp.pl/pacjent/choroby/320906,choroby-autoimmunologiczne-co-to-lista-chorob

przyczyny [05.11.2025] (10)

Hussein, H. M., & Rahal, E. A. (2019). The role of viral infections in the development of

autoimmune diseases. Critical reviews in microbiology, 45(4), 394–412.

https://doi.org/10.1080/1040841X.2019.1614904 (15)

Hyöty, H., Kääriäinen, S., Laiho, J. E., Comer, G. M., Tian, W., Härkönen, T., Lehtonen, J. P.,

Oikarinen, S., Puustinen, L., Snyder, M., León, F., Scheinin, M., Knip, M., & Sanjuan, M. (2024). Safety, tolerability and immunogenicity of PRV-101, a multivalent vaccine targeting coxsackie B

viruses (CVBs) associated with type 1 diabetes: a double-blind randomised placebo-controlled Phase I trial. Diabetologia, 67(5), 811–821. https://doi.org/10.1007/s00125-024-06092-w (34)

Ilonen, J., Lempainen, J., & Veijola, R. (2019). The heterogeneous pathogenesis of type 1

diabetes mellitus. Nature reviews. Endocrinology, 15(11), 635–650.

https://doi.org/10.1038/s41574-019-0254-y (33)

Isaacs, S. R., Roy, A., Dance, B., Ward, E. J., Foskett, D. B., Maxwell, A. J., Rawlinson, W.

D., Kim, K. W., & Craig, M. E. (2023). Enteroviruses and risk of islet autoimmunity or type 1 diabetes: systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. The lancet. Diabetes & endocrinology, 11(8), 578–592. https://doi.org/10.1016/S2213-8587(23)00122-5 (35)

Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S. A., Benedict, R. H., Zipp, F., &

Weinstock-Guttman, B. (2024). Multiple sclerosis. Lancet (London, England), 403(10422),

183–202. https://doi.org/10.1016/S0140-6736(23)01473-3 (57)

Johnson, D., & Jiang, W. (2023). Infectious diseases, autoantibodies, and autoimmunity.

Journal of autoimmunity, 137, 102962. https://doi.org/10.1016/j.jaut.2022.102962 (26)

Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J.,

Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature reviews. Disease primers, 3, 17016. https://doi.org/10.1038/nrdp.2017.16 (31)

Kim, A., Xie, F., Abed, O. A., & Moon, J. J. (2023). Vaccines for immune tolerance against

autoimmune disease. Advanced drug delivery reviews, 203, 115140.

https://doi.org/10.1016/j.addr.2023.115140 (70 i 74)

Kinney, S. M., Ortaleza, K., Won, S. Y., Licht, B. J. M., & Sefton, M. V. (2023).

Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials, 301, 122265. https://doi.org/10.1016/j.biomaterials.2023.122265 (80)

Kondo, N., Kuroda, T., & Kobayashi, D. (2021). Cytokine Networks in the Pathogenesis of

Rheumatoid Arthritis. International journal of molecular sciences, 22(20), 10922.

https://doi.org/10.3390/ijms222010922 (53)

Kumar, M., Yip, L., Wang, F., Marty, S. E., & Fathman, C. G. (2025). Autoimmune disease:

genetic susceptibility, environmental triggers, and immune dysregulation. Where can we develop therapies?. Frontiers in immunology, 16, 1626082. https://doi.org/10.3389/fimmu.2025.1626082 (7)

Lou, H., Ling, G. S., & Cao, X. (2022). Autoantibodies in systemic lupus erythematosus:

From immunopathology to therapeutic target. Journal of autoimmunity, 132, 102861.

https://doi.org/10.1016/j.jaut.2022.102861 (40)

Mauvais, F. X., & van Endert, P. M. (2025). Type 1 Diabetes: A Guide to Autoimmune

Mechanisms for Clinicians. Diabetes, obesity & metabolism, 27 Suppl 6(Suppl 6), 40–56. https://doi.org/10.1111/dom.16460 28)

McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple

Sclerosis: A Review. JAMA. 2021;325(8):765–779. https://doi.org/10.1001/jama.2020.26858 (56)

McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid

arthritis. Lancet (London, England), 389(10086), 2328–2337.

https://doi.org/10.1016/S0140-6736(17)31472-1 (52)

McKinnon, J. E., & Maksimowicz-McKinnon, K. (2016). Autoimmune disease and

vaccination: impact on infectious disease prevention and a look at future applications. Translational research : the journal of laboratory and clinical medicine, 167(1), 46–60. https://doi.org/10.1016/j.trsl.2015.08.008 (73)

Miller, S. D., & Eagar, T. N. (2001). Functional role of epitope spreading in the chronic

pathogenesis of autoimmune and virus-induced demyelinating diseases. Advances in experimental medicine and biology, 490, 99–107. https://doi.org/10.1007/978-1-4615-1243-1_10 (20)

Moorman, C. D., Sohn, S. J., & Phee, H. (2021). Emerging Therapeutics for Immune

Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Frontiers in immunology, 12, 657768. https://doi.org/10.3389/fimmu.2021.657768 (75)

Munz, C.; Lunemann, J.D.; Getts, M.T.; Miller, S.D. (2009). Antiviral immune responses:

Triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 2009, 9, 246–258. (18)

Nikolic, T., Suwandi, J. S., Wesselius, J., Laban, S., Joosten, A. M., Sonneveld, P., Mul, D.,

Aanstoot, H. J., Kaddis, J. S., Zwaginga, J. J., & Roep, B. O. (2022). Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Frontiers in immunology, 13, 1054968. https://doi.org/10.3389/fimmu.2022.1054968 (76)

Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. (2000). Multiple Sclerosis.

The New England Journal of Medicine. 2000;343(13):938-52. https://doi.org/10.1056/NEJM200009283431307 (60)

Pacheco, Y., Acosta-Ampudia, Y., Monsalve, D. M., Chang, C., Gershwin, M. E., & Anaya, J.

M. (2019). Bystander activation and autoimmunity. Journal of autoimmunity, 103, 102301. https://doi.org/10.1016/j.jaut.2019.06.012 (25)

Pagkopoulou, E., Loutradis, C., Papaioannou, M., Daoudaki, M., Stangou, M., & Dimitroulas,

T. (2025). Autoantibodies in Systemic Lupus Erythematosus: Diagnostic and Pathogenic Insights. Journal of clinical medicine, 14(16), 5714. https://doi.org/10.3390/jcm14165714 (38)

Pane, J. A., & Coulson, B. S. (2015). Lessons from the mouse: potential contribution of

bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia, 58(6), 1149–1159. https://doi.org/10.1007/s00125-015-3562-3 (27)

Peterson, E., Gallagher, M. K., & Wilbur, J. (2024). Rheumatoid Arthritis: Diagnosis and

Management for the Family Physician. American family physician, 110(5), 515–526. (55)

Petráš, M., Lesná, I. K., Dáňová, J., & Čelko, A. M. (2021). Can Vaccination Trigger

Autoimmune Disorders? A Meta-Analysis. Vaccines, 9(8), 821. https://doi.org/10.3390/vaccines9080821 (69)

Pisetsky D. S. (2023). Pathogenesis of autoimmune disease. Nature reviews. Nephrology,

19(8), 509–524. https://doi.org/10.1038/s41581-023-00720-1 (2)

Pisetsky D. S. (2024). Unique Interplay Between Antinuclear Antibodies and Nuclear

Molecules in the Pathogenesis of Systemic Lupus Erythematosus. Arthritis & rheumatology (Hoboken, N.J.), 76(9), 1334–1343. https://doi.org/10.1002/art.42863 (41)

Quaglia, M., Merlotti, G., De Andrea, M., Borgogna, C., & Cantaluppi, V. (2021). Viral

Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses, 13(2), 277. https://doi.org/10.3390/v13020277 (46)

Quattrin, T., Mastrandrea, L. D., & Walker, L. S. K. (2023). Type 1 diabetes. Lancet (London,

England), 401(10394), 2149–2162. https://doi.org/10.1016/S0140-6736(23)00223-4 (32)

Ranjan, S., Kumar, S., Nayak, H., & Panda, A. K. (2025). Epstein-Barr virus infection and its

association with systemic lupus erythematosus: Systematic review and meta-analysis. Lupus,

34(12), 1261–1274. https://doi.org/10.1177/09612033251371333 (45)

Ras-Carmona, A., Lehmann, A., & Reche, P. A. (2025). Similarity to Self-Antigens Shapes

Epitope Recognition from Viruses Under Autoimmune and Infectious Disease. International journal of molecular sciences, 26(13), 6041. https://doi.org/10.3390/ijms26136041 (21)

Reich DS, Lucchinetti CF, Calabresi PA. (2018). Multiple Sclerosis. The New England

Journal of Medicine. 2018;378(2):169-180. https://doi.org/10.1056/NEJMra1401483 (58)

Rojas, M., Herrán, M., Ramírez-Santana, C., Leung, P. S. C., Anaya, J. M., Ridgway, W. M.,

& Gershwin, M. E. (2023). Molecular mimicry and autoimmunity in the time of COVID-19. Journal of autoimmunity, 139, 103070. https://doi.org/10.1016/j.jaut.2023.103070 (24)

Siegel CH, Sammaritano LR. (2024) Systemic Lupus Erythematosus: A Review. JAMA.

2024;331(17):1480–1491. https://doi.org/10.1001/jama.2024.2315 (37)

Singh, R., Koppu, S., Perche, P. O., & Feldman, S. R. (2021). The Cytokine Mediated

Molecular Pathophysiology of Psoriasis and Its Clinical Implications. International journal of molecular sciences, 22(23), 12793. https://doi.org/10.3390/ijms222312793 (65)

Smatti, M. K., Cyprian, F. S., Nasrallah, G. K., Al Thani, A. A., Almishal, R. O., & Yassine,

H. M. (2019). Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses, 11(8), 762. https://doi.org/10.3390/v11080762 (12 jak 23)

Smith, D. A., & Germolec, D. R. (1999). Introduction to immunology and autoimmunity.

Environmental health perspectives, 107 Suppl 5(Suppl 5), 661–665.

https://doi.org/10.1289/ehp.99107s5661 (1)

Srinivasappa, J.; Saegusa, J.; Prabhakar, B.S.; Gentry, M.K.; Buchmeier, M.J.; Wiktor, T.J.;

Koprowski, H.; Oldstone, M.B.; Notkins, A.L. (1986). Molecular mimicry: Frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J. Virol. 1986, 57, 397–401. (16)

Sun, R., Dai, H., Yao, C., Wang, H., Wu, B., Yu, X., Xu, F., & Wang, C. (2025). Artificial

Tolerogenic Dendritic Cell-Derived Vesicles Prepared by High-Pressure Homogenization for Potent Immunotherapy of Type 1 Diabetes. ACS nano, 19(19), 18214–18226.

https://doi.org/10.1021/acsnano.4c17712 (78)

Sundaresan, B., Shirafkan, F., Ripperger, K., & Rattay, K. (2023). The Role of Viral Infections

in the Onset of Autoimmune Diseases. Viruses, 15(3), 782. https://doi.org/10.3390/v15030782 (13 i 9)

Vanderlugt, C. L., Begolka, W. S., Neville, K. L., Katz-Levy, Y., Howard, L. M., Eagar, T. N.,

Bluestone, J. A., & Miller, S. D. (1998). The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunological reviews, 164, 63–72.

https://doi.org/10.1111/j.1600-065x.1998.tb01208.x (19)

Vičić, M., Kaštelan, M., Brajac, I., Sotošek, V., & Massari, L. P. (2021). Current Concepts of

Psoriasis Immunopathogenesis. International journal of molecular sciences, 22(21), 11574.

https://doi.org/10.3390/ijms222111574 (66)

Wahren-Herlenius, M., & Dörner, T. (2013). Immunopathogenic mechanisms of systemic

autoimmune disease. Lancet (London, England), 382(9894), 819–831.

https://doi.org/10.1016/S0140-6736(13)60954-X (4)

Wolff, A. S. B., & Oftedal, B. E. (2025). Aire Mutations and Autoimmune Diseases.

Advances in experimental medicine and biology, 1471, 223–246. https://doi.org/10.1007/978-3-031-77921-3_8 (3)

Wpływ wirusów na patogenezę wybranych chorób autoimmunologicznych skóry -

systematyczny przegląd piśmiennictwa. (2021) Postępy biologii komórki Tom 48 2021 nr. 4 (331-344) (48)

Yamanaka, K., Yamamoto, O., & Honda, T. (2021). Pathophysiology of psoriasis: A review.

The Journal of dermatology, 48(6), 722–731. https://doi.org/10.1111/1346-8138.15913 (67)

Yu, J., Zhao, Q., Wang, X., Zhou, H., Hu, J., Gu, L., Hu, Y., Zeng, F., Zhao, F., Yue, C., Zhou,

P., Li, G., Li, Y., Wu, W., Zhou, Y., & Li, J. (2022). Pathogenesis, multi-omics research, and clinical treatment of psoriasis. Journal of autoimmunity, 133, 102916.

https://doi.org/10.1016/j.jaut.2022.102916 (68)

Zhang, N., & Nandakumar, K. S. (2018). Recent advances in the development of vaccines for

chronic inflammatory autoimmune diseases. Vaccine, 36(23), 3208–3220.

https://doi.org/10.1016/j.vaccine.2018.04.062 (71)

Zhou, X., Zhang, S., Yu, F., Zhao, G., Geng, S., Yu, W., Wang, X. Y., & Wang, B. (2020).

Tolerogenic vaccine composited with islet-derived multipeptides and cyclosporin A induces pTreg and prevents Type 1 diabetes in murine model. Human vaccines & immunotherapeutics, 16(2), 240–250. https://doi.org/10.1080/21645515.2019.1616504 (77)

Journal of Education, Health and Sport

Downloads

  • PDF

Published

2025-12-05

How to Cite

1.
SZAFRANIEC, Artur, SZCZOTKA, Dominika, KRĘŻEL, Olga and KRĘŻEL, Maciej. Viral infections as environmental factors in the pathogenesis of selected autoimmune diseases. Journal of Education, Health and Sport. Online. 5 December 2025. Vol. 83, p. 66848. [Accessed 12 December 2025]. DOI 10.12775/JEHS.2025.83.66848.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 83 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Artur Szafraniec, Dominika Szczotka, Olga Krężel, Maciej Krężel

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 59
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

autoimmunity, viral infections, molecular mimicry, autoimmune diseases, tolerogenic vaccines
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop