Viral infections as environmental factors in the pathogenesis of selected autoimmune diseases
DOI:
https://doi.org/10.12775/JEHS.2025.83.66848Keywords
autoimmunity, viral infections, molecular mimicry, autoimmune diseases, tolerogenic vaccinesAbstract
Autoimmune diseases are conditions in which the immune system loses its ability to distinguish between self and foreign antigens, leading to tissue damage and chronic inflammation. Their development is the result of the interaction of genetic, environmental, hormonal, and immunological factors. Viral infections play a particularly important role, as they can initiate autoimmunity through mechanisms such as molecular mimicry, epitope expansion, or non-specific lymphocyte activation. The viruses most commonly associated with the development of autoimmunity include Epstein-Barr virus (EBV), Coxsackie B, HHV-6, HIV, and other. Examples of diseases in which such relationships are observed include type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and psoriasis. Although standard vaccinations do not protect against the onset of autoimmune diseases, they are an important part of preventing infections that can exacerbate their course. A promising area of research is tolerogenic vaccines, which aim to restore tolerance to autoantigens. Preclinical and early clinical studies demonstrate their safety and ability to modulate the immune response, opening up new perspectives in the treatment of autoimmune diseases.
References
Aamodt, K. I., & Powers, A. C. (2025). The pathophysiology,
presentation and classification of Type 1 diabetes. Diabetes, obesity & metabolism, 27 Suppl 6(Suppl 6), 15–27. https://doi.org/10.1111/dom.16628
Albert L.J., Inman R.D. (1999). Molecular Mimicry and Autoimmunity.The New England
Journal of Medicine. 1999;341(27):2068-74. https://doi.org/10.1056/NEJM199912303412707
Aletaha D, Smolen JS. (2018). Diagnosis and Management of Rheumatoid Arthritis: A
Review.JAMA.2018;320(13):1360–1372. https://doi.org/10.1001/jama.2018.13103
Ali, F. H. M., Smatti, M. K., Elrayess, M. A., Al Thani, A. A., & Yassine, H. M. (2023). Role
of genetics in eleven of the most common autoimmune diseases in the post genome-wide association studies era. European review for medical and pharmacological sciences, 27(18), 8463–8485. https://doi.org/10.26355/eurrev_202309_33772
Armstrong AW, Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis:
A Review. JAMA. 2020;323(19):1945–1960. https://doi.org/10.1001/jama.2020.4006
Armstrong, A. W., Blauvelt, A., Callis Duffin, K., Huang, Y. H., Savage, L. J., Guo, L., &
Merola, J.F. (2025). Psoriasis. Nature reviews. Disease primers, 11(1), 45. https://doi.org/10.1038/s41572-025-00630-5
Bijl, M., Westra, J., Mancuso, S., Bearzi, P., Giacomelli, R., & Conti, F. (2024). Should we
vaccinate during an active rheumatic disease?. Autoimmunity reviews, 23(1), 103426. https://doi.org/10.1016/j.autrev.2023.103426
Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.;
Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301.
Bolouri, N., Akhtari, M., Farhadi, E., Mansouri, R., Faezi, S. T., Jamshidi, A., & Mahmoudi,
M. (2022). Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 71(5-6), 537–554. https://doi.org/10.1007/s00011-022-01554-6
Caielli, S., Wan, Z., & Pascual, V. (2023). Systemic Lupus Erythematosus Pathogenesis:
Interferon and Beyond. Annual review of immunology, 41, 533–560. https://doi.org/10.1146/annurev-immunol-101921-042422
Carré, A., Vecchio, F., Flodström-Tullberg, M., You, S., & Mallone, R. (2023).
Coxsackievirus and Type 1 Diabetes: Diabetogenic Mechanisms and Implications for Prevention. Endocrine reviews, 44(4), 737–751. https://doi.org/10.1210/endrev/bnad007
Cauwels, A., & Tavernier, J. (2020). Tolerizing Strategies for the Treatment of Autoimmune
Diseases: From ex vivo to in vivo Strategies. Frontiers in immunology, 11, 674. https://doi.org/10.3389/fimmu.2020.00674
Chen, X., Xie, Z., Wu, R., He, X., Qin, M., Wang, H., Bai, S., Chen, Z., He, C., Ou, Y., Zhao,
Y., Xie,M., Zhang, Y., Du, G., & Sun, X. (2025). Liver-Targeted Tolerogenic Vaccines: A Nano-Membrane Coupled Approach for Autoimmune Disease Therapies. Advanced materials (Deerfield Beach, Fla.), 37(35), e2507743. https://doi.org/10.1002/adma.202507743
Choy E. (2012). Understanding the dynamics: pathways involved in the pathogenesis of
rheumatoid arthritis. Rheumatology (Oxford, England), 51 Suppl 5, v3–v11. https://doi.org/10.1093/rheumatology/kes113
Cifuentes-Rius, A., Desai, A., Yuen, D., Johnston, A. P. R., & Voelcker, N. H. (2021).
Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature nanotechnology, 16(1), 37–46. https://doi.org/10.1038/s41565-020-00810-2
Conrad, N., Misra, S., Verbakel, J. Y., Verbeke, G., Molenberghs, G., Taylor, P. N., Mason, J.,
Sattar, N., McMurray, J. J. V., McInnes, I. B., Khunti, K., & Cambridge, G. (2023). Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet (London, England), 401(10391), 1878–1890. https://doi.org/10.1016/S0140-6736(23)00457-9
Danieli, M. G., Casciaro, M., Paladini, A., Bartolucci, M., Sordoni, M., Shoenfeld, Y., &
Gangemi, S. (2024). Exposome: Epigenetics and autoimmune diseases. Autoimmunity reviews, 23(6), 103584. https://doi.org/10.1016/j.autrev.2024.103584
de Ferranti, S. D., de Boer, I. H., Fonseca, V., Fox, C. S., Golden, S. H., Lavie, C. J., Magge,
S. N., Marx, N., McGuire, D. K., Orchard, T. J., Zinman, B., & Eckel, R. H. (2014). Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes care, 37(10), 2843–2863. https://doi.org/10.2337/dc14-1720
Di Matteo, A., Bathon, J. M., & Emery, P. (2023). Rheumatoid arthritis. Lancet (London,
England), 402(10416), 2019–2033. https://doi.org/10.1016/S0140-6736(23)01525-8 (4
Forum Reumatol. 2020, tom 6, nr 3, 131–138 Copyright © 2020 Via Medica ISSN 2450–3088
https://DOI.org/10.5603/FR.2020.001 (11)
Gebe, J.A.; Falk, B.A.; Rock, K.A.; Kochik, S.A.; Heninger, A.K.; Reijonen, H.; Kwok,
W.W.; Nepom, G.T. (2003). Low-avidity recognition by CD4+ T cells directed to self-antigens. Eur. J. Immunol. 2003, 33, 1409–1417. (17)
Getts, D. R., Chastain, E. M., Terry, R. L., & Miller, S. D. (2013). Virus infection, antiviral
immunity, and autoimmunity. Immunological reviews, 255(1), 197–209. https://doi.org/10.1111/imr.12091 (14)
Gómez-Bañuelos, E., Fava, A., & Andrade, F. (2023). An update on autoantibodies in
systemic lupus erythematosus. Current opinion in rheumatology, 35(2), 61–67. https://doi.org/10.1097/BOR.0000000000000922 (44)
Gravallese E.M., Firestein G.S. (2023). Rheumatoid Arthritis — Common Origins, Divergent
Mechanisms.The New England Journal of Medicine. 2023;388(6):529-542.
https://doi.org/10..1056/NEJMra2103726 (51)
Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. N. W. N. (2021).
Psoriasis. Lancet (London, England), 397(10281), 1301–1315. https://doi.org/10.1016/S0140-6736(20)32549-6 (64)
Grigoriadis, N., van Pesch, V., & ParadigMS Group (2015). A basic overview of multiple
sclerosis immunopathology. European journal of neurology, 22 Suppl 2, 3–13.
https://doi.org/10.1111/ene.12798 (59)
Hoi, A., Igel, T., Mok, C. C., & Arnaud, L. (2024). Systemic lupus erythematosus. Lancet
(London, England), 403(10441), 2326–2338. https://doi.org/10.1016/S0140-6736(24)00398-2 (39 i 47)
https://www.mp.pl/pacjent/choroby/320906,choroby-autoimmunologiczne-co-to-lista-chorob
przyczyny [05.11.2025] (10)
Hussein, H. M., & Rahal, E. A. (2019). The role of viral infections in the development of
autoimmune diseases. Critical reviews in microbiology, 45(4), 394–412.
https://doi.org/10.1080/1040841X.2019.1614904 (15)
Hyöty, H., Kääriäinen, S., Laiho, J. E., Comer, G. M., Tian, W., Härkönen, T., Lehtonen, J. P.,
Oikarinen, S., Puustinen, L., Snyder, M., León, F., Scheinin, M., Knip, M., & Sanjuan, M. (2024). Safety, tolerability and immunogenicity of PRV-101, a multivalent vaccine targeting coxsackie B
viruses (CVBs) associated with type 1 diabetes: a double-blind randomised placebo-controlled Phase I trial. Diabetologia, 67(5), 811–821. https://doi.org/10.1007/s00125-024-06092-w (34)
Ilonen, J., Lempainen, J., & Veijola, R. (2019). The heterogeneous pathogenesis of type 1
diabetes mellitus. Nature reviews. Endocrinology, 15(11), 635–650.
https://doi.org/10.1038/s41574-019-0254-y (33)
Isaacs, S. R., Roy, A., Dance, B., Ward, E. J., Foskett, D. B., Maxwell, A. J., Rawlinson, W.
D., Kim, K. W., & Craig, M. E. (2023). Enteroviruses and risk of islet autoimmunity or type 1 diabetes: systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. The lancet. Diabetes & endocrinology, 11(8), 578–592. https://doi.org/10.1016/S2213-8587(23)00122-5 (35)
Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S. A., Benedict, R. H., Zipp, F., &
Weinstock-Guttman, B. (2024). Multiple sclerosis. Lancet (London, England), 403(10422),
183–202. https://doi.org/10.1016/S0140-6736(23)01473-3 (57)
Johnson, D., & Jiang, W. (2023). Infectious diseases, autoantibodies, and autoimmunity.
Journal of autoimmunity, 137, 102962. https://doi.org/10.1016/j.jaut.2022.102962 (26)
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J.,
Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature reviews. Disease primers, 3, 17016. https://doi.org/10.1038/nrdp.2017.16 (31)
Kim, A., Xie, F., Abed, O. A., & Moon, J. J. (2023). Vaccines for immune tolerance against
autoimmune disease. Advanced drug delivery reviews, 203, 115140.
https://doi.org/10.1016/j.addr.2023.115140 (70 i 74)
Kinney, S. M., Ortaleza, K., Won, S. Y., Licht, B. J. M., & Sefton, M. V. (2023).
Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials, 301, 122265. https://doi.org/10.1016/j.biomaterials.2023.122265 (80)
Kondo, N., Kuroda, T., & Kobayashi, D. (2021). Cytokine Networks in the Pathogenesis of
Rheumatoid Arthritis. International journal of molecular sciences, 22(20), 10922.
https://doi.org/10.3390/ijms222010922 (53)
Kumar, M., Yip, L., Wang, F., Marty, S. E., & Fathman, C. G. (2025). Autoimmune disease:
genetic susceptibility, environmental triggers, and immune dysregulation. Where can we develop therapies?. Frontiers in immunology, 16, 1626082. https://doi.org/10.3389/fimmu.2025.1626082 (7)
Lou, H., Ling, G. S., & Cao, X. (2022). Autoantibodies in systemic lupus erythematosus:
From immunopathology to therapeutic target. Journal of autoimmunity, 132, 102861.
https://doi.org/10.1016/j.jaut.2022.102861 (40)
Mauvais, F. X., & van Endert, P. M. (2025). Type 1 Diabetes: A Guide to Autoimmune
Mechanisms for Clinicians. Diabetes, obesity & metabolism, 27 Suppl 6(Suppl 6), 40–56. https://doi.org/10.1111/dom.16460 28)
McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple
Sclerosis: A Review. JAMA. 2021;325(8):765–779. https://doi.org/10.1001/jama.2020.26858 (56)
McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid
arthritis. Lancet (London, England), 389(10086), 2328–2337.
https://doi.org/10.1016/S0140-6736(17)31472-1 (52)
McKinnon, J. E., & Maksimowicz-McKinnon, K. (2016). Autoimmune disease and
vaccination: impact on infectious disease prevention and a look at future applications. Translational research : the journal of laboratory and clinical medicine, 167(1), 46–60. https://doi.org/10.1016/j.trsl.2015.08.008 (73)
Miller, S. D., & Eagar, T. N. (2001). Functional role of epitope spreading in the chronic
pathogenesis of autoimmune and virus-induced demyelinating diseases. Advances in experimental medicine and biology, 490, 99–107. https://doi.org/10.1007/978-1-4615-1243-1_10 (20)
Moorman, C. D., Sohn, S. J., & Phee, H. (2021). Emerging Therapeutics for Immune
Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Frontiers in immunology, 12, 657768. https://doi.org/10.3389/fimmu.2021.657768 (75)
Munz, C.; Lunemann, J.D.; Getts, M.T.; Miller, S.D. (2009). Antiviral immune responses:
Triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 2009, 9, 246–258. (18)
Nikolic, T., Suwandi, J. S., Wesselius, J., Laban, S., Joosten, A. M., Sonneveld, P., Mul, D.,
Aanstoot, H. J., Kaddis, J. S., Zwaginga, J. J., & Roep, B. O. (2022). Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Frontiers in immunology, 13, 1054968. https://doi.org/10.3389/fimmu.2022.1054968 (76)
Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. (2000). Multiple Sclerosis.
The New England Journal of Medicine. 2000;343(13):938-52. https://doi.org/10.1056/NEJM200009283431307 (60)
Pacheco, Y., Acosta-Ampudia, Y., Monsalve, D. M., Chang, C., Gershwin, M. E., & Anaya, J.
M. (2019). Bystander activation and autoimmunity. Journal of autoimmunity, 103, 102301. https://doi.org/10.1016/j.jaut.2019.06.012 (25)
Pagkopoulou, E., Loutradis, C., Papaioannou, M., Daoudaki, M., Stangou, M., & Dimitroulas,
T. (2025). Autoantibodies in Systemic Lupus Erythematosus: Diagnostic and Pathogenic Insights. Journal of clinical medicine, 14(16), 5714. https://doi.org/10.3390/jcm14165714 (38)
Pane, J. A., & Coulson, B. S. (2015). Lessons from the mouse: potential contribution of
bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia, 58(6), 1149–1159. https://doi.org/10.1007/s00125-015-3562-3 (27)
Peterson, E., Gallagher, M. K., & Wilbur, J. (2024). Rheumatoid Arthritis: Diagnosis and
Management for the Family Physician. American family physician, 110(5), 515–526. (55)
Petráš, M., Lesná, I. K., Dáňová, J., & Čelko, A. M. (2021). Can Vaccination Trigger
Autoimmune Disorders? A Meta-Analysis. Vaccines, 9(8), 821. https://doi.org/10.3390/vaccines9080821 (69)
Pisetsky D. S. (2023). Pathogenesis of autoimmune disease. Nature reviews. Nephrology,
19(8), 509–524. https://doi.org/10.1038/s41581-023-00720-1 (2)
Pisetsky D. S. (2024). Unique Interplay Between Antinuclear Antibodies and Nuclear
Molecules in the Pathogenesis of Systemic Lupus Erythematosus. Arthritis & rheumatology (Hoboken, N.J.), 76(9), 1334–1343. https://doi.org/10.1002/art.42863 (41)
Quaglia, M., Merlotti, G., De Andrea, M., Borgogna, C., & Cantaluppi, V. (2021). Viral
Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses, 13(2), 277. https://doi.org/10.3390/v13020277 (46)
Quattrin, T., Mastrandrea, L. D., & Walker, L. S. K. (2023). Type 1 diabetes. Lancet (London,
England), 401(10394), 2149–2162. https://doi.org/10.1016/S0140-6736(23)00223-4 (32)
Ranjan, S., Kumar, S., Nayak, H., & Panda, A. K. (2025). Epstein-Barr virus infection and its
association with systemic lupus erythematosus: Systematic review and meta-analysis. Lupus,
34(12), 1261–1274. https://doi.org/10.1177/09612033251371333 (45)
Ras-Carmona, A., Lehmann, A., & Reche, P. A. (2025). Similarity to Self-Antigens Shapes
Epitope Recognition from Viruses Under Autoimmune and Infectious Disease. International journal of molecular sciences, 26(13), 6041. https://doi.org/10.3390/ijms26136041 (21)
Reich DS, Lucchinetti CF, Calabresi PA. (2018). Multiple Sclerosis. The New England
Journal of Medicine. 2018;378(2):169-180. https://doi.org/10.1056/NEJMra1401483 (58)
Rojas, M., Herrán, M., Ramírez-Santana, C., Leung, P. S. C., Anaya, J. M., Ridgway, W. M.,
& Gershwin, M. E. (2023). Molecular mimicry and autoimmunity in the time of COVID-19. Journal of autoimmunity, 139, 103070. https://doi.org/10.1016/j.jaut.2023.103070 (24)
Siegel CH, Sammaritano LR. (2024) Systemic Lupus Erythematosus: A Review. JAMA.
2024;331(17):1480–1491. https://doi.org/10.1001/jama.2024.2315 (37)
Singh, R., Koppu, S., Perche, P. O., & Feldman, S. R. (2021). The Cytokine Mediated
Molecular Pathophysiology of Psoriasis and Its Clinical Implications. International journal of molecular sciences, 22(23), 12793. https://doi.org/10.3390/ijms222312793 (65)
Smatti, M. K., Cyprian, F. S., Nasrallah, G. K., Al Thani, A. A., Almishal, R. O., & Yassine,
H. M. (2019). Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses, 11(8), 762. https://doi.org/10.3390/v11080762 (12 jak 23)
Smith, D. A., & Germolec, D. R. (1999). Introduction to immunology and autoimmunity.
Environmental health perspectives, 107 Suppl 5(Suppl 5), 661–665.
https://doi.org/10.1289/ehp.99107s5661 (1)
Srinivasappa, J.; Saegusa, J.; Prabhakar, B.S.; Gentry, M.K.; Buchmeier, M.J.; Wiktor, T.J.;
Koprowski, H.; Oldstone, M.B.; Notkins, A.L. (1986). Molecular mimicry: Frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J. Virol. 1986, 57, 397–401. (16)
Sun, R., Dai, H., Yao, C., Wang, H., Wu, B., Yu, X., Xu, F., & Wang, C. (2025). Artificial
Tolerogenic Dendritic Cell-Derived Vesicles Prepared by High-Pressure Homogenization for Potent Immunotherapy of Type 1 Diabetes. ACS nano, 19(19), 18214–18226.
https://doi.org/10.1021/acsnano.4c17712 (78)
Sundaresan, B., Shirafkan, F., Ripperger, K., & Rattay, K. (2023). The Role of Viral Infections
in the Onset of Autoimmune Diseases. Viruses, 15(3), 782. https://doi.org/10.3390/v15030782 (13 i 9)
Vanderlugt, C. L., Begolka, W. S., Neville, K. L., Katz-Levy, Y., Howard, L. M., Eagar, T. N.,
Bluestone, J. A., & Miller, S. D. (1998). The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunological reviews, 164, 63–72.
https://doi.org/10.1111/j.1600-065x.1998.tb01208.x (19)
Vičić, M., Kaštelan, M., Brajac, I., Sotošek, V., & Massari, L. P. (2021). Current Concepts of
Psoriasis Immunopathogenesis. International journal of molecular sciences, 22(21), 11574.
https://doi.org/10.3390/ijms222111574 (66)
Wahren-Herlenius, M., & Dörner, T. (2013). Immunopathogenic mechanisms of systemic
autoimmune disease. Lancet (London, England), 382(9894), 819–831.
https://doi.org/10.1016/S0140-6736(13)60954-X (4)
Wolff, A. S. B., & Oftedal, B. E. (2025). Aire Mutations and Autoimmune Diseases.
Advances in experimental medicine and biology, 1471, 223–246. https://doi.org/10.1007/978-3-031-77921-3_8 (3)
Wpływ wirusów na patogenezę wybranych chorób autoimmunologicznych skóry -
systematyczny przegląd piśmiennictwa. (2021) Postępy biologii komórki Tom 48 2021 nr. 4 (331-344) (48)
Yamanaka, K., Yamamoto, O., & Honda, T. (2021). Pathophysiology of psoriasis: A review.
The Journal of dermatology, 48(6), 722–731. https://doi.org/10.1111/1346-8138.15913 (67)
Yu, J., Zhao, Q., Wang, X., Zhou, H., Hu, J., Gu, L., Hu, Y., Zeng, F., Zhao, F., Yue, C., Zhou,
P., Li, G., Li, Y., Wu, W., Zhou, Y., & Li, J. (2022). Pathogenesis, multi-omics research, and clinical treatment of psoriasis. Journal of autoimmunity, 133, 102916.
https://doi.org/10.1016/j.jaut.2022.102916 (68)
Zhang, N., & Nandakumar, K. S. (2018). Recent advances in the development of vaccines for
chronic inflammatory autoimmune diseases. Vaccine, 36(23), 3208–3220.
https://doi.org/10.1016/j.vaccine.2018.04.062 (71)
Zhou, X., Zhang, S., Yu, F., Zhao, G., Geng, S., Yu, W., Wang, X. Y., & Wang, B. (2020).
Tolerogenic vaccine composited with islet-derived multipeptides and cyclosporin A induces pTreg and prevents Type 1 diabetes in murine model. Human vaccines & immunotherapeutics, 16(2), 240–250. https://doi.org/10.1080/21645515.2019.1616504 (77)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Artur Szafraniec, Dominika Szczotka, Olga Krężel, Maciej Krężel

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 59
Number of citations: 0