Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Sleep and Blood-Brain Barrier Integrity - Current Understanding and Biological Mechanisms: Literature Review
  • Home
  • /
  • Sleep and Blood-Brain Barrier Integrity - Current Understanding and Biological Mechanisms: Literature Review
  1. Home /
  2. Archives /
  3. Vol. 86 (2025) /
  4. Medical Sciences

Sleep and Blood-Brain Barrier Integrity - Current Understanding and Biological Mechanisms: Literature Review

Authors

  • Karolina Dziki 5th Military Clinical Hospital with Polyclinic SPZOZ, Wrocławska 1-3, 30-901 Kraków https://orcid.org/0009-0005-1720-3810
  • Wiktoria Dybizbańska Independent Public Healthcare Institution of the Ministry of the Interior and Administration in Kraków, Kronikarza Galla 25, 30-053 Kraków https://orcid.org/0009-0000-9899-7272
  • Katarzyna Garncarz 5th Military Clinical Hospital with Polyclinic SPZOZ, Wrocławska 1-3, 30-901 Kraków https://orcid.org/0009-0001-7554-2715
  • Agnieszka Burzej 5th Military Clinical Hospital with Polyclinic SPZOZ, Wrocławska 1-3, 30-901 Kraków https://orcid.org/0009-0003-0066-3197
  • Zofia Nowakowska Upper Silesian Medical Center of Prof. Leszek Giec of the Silesian Medical University in Katowice, Ziołowa 45-47, 40-635 Katowice https://orcid.org/0009-0000-8030-7341
  • Krzysztof Jamroch 5th Military Clinical Hospital with Polyclinic SPZOZ, Wrocławska 1-3, 30-901 Kraków https://orcid.org/0009-0003-2562-1276
  • Mateusz Kacalak The Nicolaus Copernicus Provincial Multispecialty Center for Oncology and Traumatology in Łódź, ul. Pabianicka 62, 93-513 Łódź https://orcid.org/0009-0006-3386-0906
  • Maciej Komenda 105 Military Hospital SP ZOZ in Żary, ul. Domańskiego 2, 68-200 Żary https://orcid.org/0009-0009-7327-417X
  • Aleksandra Marek Central Teaching Hospital of the Medical University of Łódź, Pomorska 251, 92-213 Łódź https://orcid.org/0009-0002-3391-5082
  • Julia Szklarska-Komenda 105 Military Hospital SP ZOZ in Żary, ul. Domańskiego 2, 68-200 Żary https://orcid.org/0009-0000-9914-4917

DOI:

https://doi.org/10.12775/JEHS.2025.86.66821

Keywords

blood-brain barrier, sleep, sleep deprivation, sleep loss, circadian rhythm, glymphatic system, oxidative stress, obstructive sleep apnea syndrome

Abstract

Background: The blood-brain barrier (BBB) maintains central nervous system homeostasis through the coordinated activity of endothelial cells, pericytes, astrocytes, and other components of the neurovascular unit (NVU). Both sleep and circadian rhythms are critical for preserving BBB integrity.

Aim This review summarizes current understanding of the relationship between sleep and blood-brain barrier function, with particular focus on cellular and molecular mechanisms, and the clinical consequences of sleep disorders.

Material and methods: Articles published between 2010 and 2025 were selected, with earlier publications included when relevant. The search employed the keywords: “blood-brain barrier,” “sleep,” “sleep deprivation,” “sleep loss,” “circadian rhythm,” “glymphatic system,” “oxidative stress,” and “obstructive sleep apnea syndrome.” Sources included PubMed, Google Scholar, and ScienceDirect. Sixty-nine studies were chosen based on relevance, and quality of evidence.

Results: Recent studies demonstrate that optimal sleep architecture plays a regulatory role in the neurovascular unit (NVU). Sleep deprivation and circadian rhythm disturbances have been shown to increase blood-brain barrier (BBB) permeability, induce oxidative stress, impair the glymphatic system, promote persistent low-grade inflammation, and lead to the accumulation of neurotoxic metabolites. Collectively, these changes may accelerate the progression of neurodegenerative diseases.

Conclusion: These findings suggest that maintaining normal sleep patterns and stable circadian rhythms is essential for preserving neurovascular homeostasis and preventing brain degeneration. More translational and clinical research is needed to identify therapeutic targets. Further studies must also clarify the long-term effects of sleep disruption on BBB function and overall brain health.

References

Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of disease, 37(1), 13-25. https://doi.org/10.1016/j.nbd.2009.07.030

Sweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 14(3), 133-150. https://doi.org/10.1038/nrneurol.2017.188

Xie, Lulu, et al. "Sleep drives metabolite clearance from the adult brain." science 342.6156 (2013): 373-377. DOI:10.1126/science.1241224

Jessen, N. A., Munk, A. S. F., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: a beginner’s guide. Neurochemical research, 40(12), 2583-2599. https://doi.org/10.1007/s11064-015-1581-6

He, Junyun, et al. "Sleep restriction impairs blood–brain barrier function." Journal of Neuroscience 34.44 (2014): 14697-14706. https://doi.org/10.1523/JNEUROSCI.2111-14.2014

Cuddapah, Vishnu Anand, Shirley L. Zhang, and Amita Sehgal. "Regulation of the blood–brain barrier by circadian rhythms and sleep." Trends in neurosciences 42.7 (2019): 500-510. DOI: 10.1016/j.tins.2019.05.001

Segarra, Marta, Maria R. Aburto, and Amparo Acker-Palmer. "Blood–brain barrier dynamics to maintain brain homeostasis." Trends in neurosciences 44.5 (2021): 393-405. DOI: 10.1016/j.tins.2020.12.002

Palmer, Gene C. "Neurochemical coupled actions of transmitters in the microvasculature of the brain." Neuroscience & Biobehavioral Reviews 10.2 (1986): 79-101. https://doi.org/10.1016/0149-7634(86)90020-5

Sharma, Hari Shanker, and Syed F. Ali. "Alterations in blood–brain barrier function by morphine and methamphetamine." Annals of the New York Academy of Sciences 1074.1 (2006): 198-224. https://doi.org/10.1196/annals.1369.020

Schurhoff, Nicolette, and Michal Toborek. "Circadian rhythms in the blood–brain barrier: impact on neurological disorders and stress responses." Molecular brain 16.1 (2023): 5. https://doi.org/10.1186/s13041-023-00997-0

Daneman, Richard, et al. "Pericytes are required for blood–brain barrier integrity during embryogenesis." Nature 468.7323 (2010): 562-566. https://doi.org/10.1038/nature09513

Armulik, Annika, et al. "Pericytes regulate the blood–brain barrier." Nature 468.7323 (2010): 557-561. https://doi.org/10.1038/nature09522

Iadecola, Costantino. "The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease." Neuron 96.1 (2017): 17-42. DOI: 10.1016/j.neuron.2017.07.030

Langen, U. H., Ayloo, S., & Gu, C. (2019). Development and cell biology of the blood-brain barrier. Annual review of cell and developmental biology, 35(1), 591-613. https://doi.org/10.1146/annurev-cellbio-100617-062608

Greene, Chris, and Matthew Campbell. "Tight junction modulation of the blood brain barrier: CNS delivery of small molecules." Tissue barriers 4.1 (2016): e1138017. https://doi.org/10.1080/21688370.2015.1138017

Zhang, Shirley L., et al. "A circadian clock regulates efflux by the blood-brain barrier in mice and human cells." Nature Communications 12.1 (2021): 617. https://doi.org/10.1038/s41467-020-20795-9

Greco, Carolina Magdalen, and Paolo Sassone–Corsi. "Circadian blueprint of metabolic pathways in the brain." Nature Reviews Neuroscience 20.2 (2019): 71-82. https://doi.org/10.1038/s41583-018-0096-y

Naranjo, Oandy, et al. "In vivo targeting of the neurovascular unit: challenges and advancements." Cellular and molecular neurobiology 42.7 (2022): 2131-2146. https://doi.org/10.1007/s10571-021-01113-3

Fonken, Laura K., et al. "Microglia inflammatory responses are controlled by an intrinsic circadian clock." Brain, behavior, and immunity 45 (2015): 171-179. https://doi.org/10.1016/j.bbi.2014.11.009

Brinkman, Joshua E., Vamsi Reddy, and Sandeep Sharma. "Physiology of sleep." (2018). https://europepmc.org/article/nbk/nbk482512

Avilez-Avilez, Jessica Janeth, María Fernanda Medina-Flores, and Beatriz Gómez-Gonzalez. "Sleep loss impairs blood-brain barrier function: Cellular and molecular mechanisms." Vitamins and Hormones 126 (2024): 77-96. https://doi.org/10.1016/bs.vh.2024.02.003

Xie, Lulu, et al. "Sleep drives metabolite clearance from the adult brain." science 342.6156 (2013): 373-377. DOI: 10.1126/science.1241224

Eide, Per Kristian, et al. "Sleep deprivation impairs molecular clearance from the human brain." Brain 144.3 (2021): 863-874. https://doi.org/10.1093/brain/awaa443

Carskadon, Mary A., and William C. Dement. "Normal human sleep: an overview." Principles and practice of sleep medicine 4.1 (2005): 13-23.

Borb, Alexander A., and Peter Achermann. "Sleep homeostasis and models of sleep regulation." Journal of biological rhythms 14.6 (1999): 559-570. https://doi.org/10.1177/074873099129000894

Hauner, Katherina K., et al. "Stimulus-specific enhancement of fear extinction during slow-wave sleep." Nature neuroscience 16.11 (2013): 1553-1555. https://doi.org/10.1038/nn.3527

Brown, Ritchie E., et al. "Control of sleep and wakefulness." Physiological reviews (2012). https://doi.org/10.1152/physrev.00032.2011

Semyachkina-Glushkovskaya, Oxana, et al. "Sleep as a novel biomarker and a promising therapeutic target for cerebral small vessel disease: A review focusing on Alzheimer’s disease and the blood-brain barrier." International journal of molecular sciences 21.17 (2020): 6293. https://doi.org/10.3390/ijms21176293

Roh, Jee Hoon, et al. "Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology." Science translational medicine 4.150 (2012): 150ra122-150ra122. DOI: 10.1126/scitranslmed.3004291

Holth, Jerrah K., et al. "The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans." Science 363.6429 (2019): 880-884. DOI: 10.1126/science.aav2546

Bjorness, Theresa E., and Robert W. Greene. "Adenosine and sleep." Current neuropharmacology 7.3 (2009): 238-245. https://doi.org/10.2174/157015909789152182

Hastings, Michael H., Elizabeth S. Maywood, and Marco Brancaccio. "Generation of circadian rhythms in the suprachiasmatic nucleus." Nature Reviews Neuroscience 19.8 (2018): 453-469. https://doi.org/10.1038/s41583-018-0026-z

Paschos, Georgios K., and Garret A. FitzGerald. "Circadian clocks and vascular function." Circulation research 106.5 (2010): 833-841. https://doi.org/10.1161/CIRCRESAHA.109.211706

Welsh, David K., Joseph S. Takahashi, and Steve A. Kay. "Suprachiasmatic nucleus: cell autonomy and network properties." Annual review of physiology 72.1 (2010): 551-577. https://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021909-135919

Colwell, Christopher S. "Linking neural activity and molecular oscillations in the SCN." Nature Reviews Neuroscience 12.10 (2011): 553-569. https://doi.org/10.1038/nrn3086

Dibner, Charna, Ueli Schibler, and Urs Albrecht. "The mammalian circadian timing system: organization and coordination of central and peripheral clocks." Annual review of physiology 72.1 (2010): 517-549. https://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021909-135821

Lunn, Ruth M., et al. "Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption." Science of the Total Environment 607 (2017): 1073-1084. https://doi.org/10.1016/j.scitotenv.2017.07.056

Hurtado-Alvarado, G., et al. "Blood‐brain barrier disruption induced by chronic sleep loss: low‐grade inflammation may be the link." Journal of immunology research 2016.1 (2016): 4576012. https://doi.org/10.1155/2016/4576012

Lim, Julian, and David F. Dinges. "A meta-analysis of the impact of short-term sleep deprivation on cognitive variables." Psychological bulletin 136.3 (2010): 375.

Bellesi, Michele, et al. "Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex." Journal of Neuroscience 37.21 (2017): 5263-5273. https://doi.org/10.1523/JNEUROSCI.3981-16.2017

Mullington, Janet M., et al. "Sleep loss and inflammation." Best practice & research Clinical endocrinology & metabolism 24.5 (2010): 775-784. https://doi.org/10.1016/j.beem.2010.08.014

Hurtado-Alvarado, Gabriela, et al. "Sleep loss as a factor to induce cellular and molecular inflammatory variations." Journal of Immunology Research 2013.1 (2013): 801341. https://doi.org/10.1155/2013/801341

Rechtschaffen, Allan, et al. "Physiological correlates of prolonged sleep deprivation in rats." Science 221.4606 (1983): 182-184. DOI: 10.1126/science.6857280

Shaw, Paul J., et al. "Stress response genes protect against lethal effects of sleep deprivation in Drosophila." Nature 417.6886 (2002): 287-291. https://doi.org/10.1038/417287a

Ross, John J. "Neurological findings after prolonged sleep deprivation." Archives of neurology 12.4 (1965): 399-403. doi:10.1001/archneur.1965.00460280069006

Hurtado-Alvarado, Gabriela, et al. "A2A adenosine receptor antagonism reverts the blood-brain barrier dysfunction induced by sleep restriction." PloS one 11.11 (2016): e0167236. https://doi.org/10.1371/journal.pone.0167236

Sun, Jing, et al. "Sleep deprivation induces cognitive impairment by increasing blood-brain barrier permeability via CD44." Frontiers in Neurology 11 (2020): 563916. https://doi.org/10.3389/fneur.2020.563916

Fultz, Nina E., et al. "Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep." Science 366.6465 (2019): 628-631. DOI: 10.1126/science.aax5440

Moran, Maria, et al. "Sleep disturbance in mild to moderate Alzheimer's disease." Sleep medicine 6.4 (2005): 347-352. https://doi.org/10.1016/j.sleep.2004.12.005

Hablitz, Lauren M., and Maiken Nedergaard. "The glymphatic system." Current Biology 31.20 (2021): R1371-R1375. DOI: 10.1016/j.cub.2021.08.026

Jessen, Nadia Aalling, et al. "The glymphatic system: a beginner’s guide." Neurochemical research 40.12 (2015): 2583-2599. https://doi.org/10.1007/s11064-015-1581-6

Ekpo, Okobi, Muhammed Bishir, and Abid Bhat. "Sleep deprivation and neurological disorders." (2020). http://hdl.handle.net/10566/5641

Luissint, Anny-Claude, et al. "Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation." Fluids and Barriers of the CNS 9.1 (2012): 23. https://doi.org/10.1186/2045-8118-9-23

Song, Ke, et al. "Oxidative stress‐mediated blood‐brain barrier (BBB) disruption in neurological diseases." Oxidative medicine and cellular longevity 2020.1 (2020): 4356386. https://doi.org/10.1155/2020/4356386

Davinelli, Sergio, et al. "Sleep and oxidative stress: current perspectives on the role of NRF2." Cellular and molecular neurobiology 44.1 (2024): 52. https://doi.org/10.1007/s10571-024-01487-0

Sang, Di, et al. "Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals." Cell 186.25 (2023): 5500-5516. DOI: 10.1016/j.cell.2023.10.025

Forstermann, Ulrich, and Thomas Münzel. "Endothelial nitric oxide synthase in vascular disease: from marvel to menace." Circulation 113.13 (2006): 1708-1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

Yang, Shuo, et al. "Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood–brain barrier disruption in the rat." Journal of Molecular Neuroscience 51.2 (2013): 352-363. https://doi.org/10.1007/s12031-013-9990-y

Lochhead, Jeffrey J., et al. "Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia–reoxygenation." Journal of Cerebral Blood Flow & Metabolism 30.9 (2010): 1625-1636. https://doi.org/10.1038/jcbfm.2010.29

Wang, Yue, et al. "Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes." PloS one 9.10 (2014): e110024. https://doi.org/10.1371/journal.pone.0110024

Lecuyer, Marc-Andre, Hania Kebir, and Alexandre Prat. "Glial influences on BBB functions and molecular players in immune cell trafficking." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862.3 (2016): 472-482. https://doi.org/10.1016/j.bbadis.2015.10.004

Medina-Flores, Fernanda, et al. "Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function." Brain, Behavior, and Immunity 89 (2020): 118-132. https://doi.org/10.1016/j.bbi.2020.05.077

Kim, Lenise Jihe, et al. "Hypomyelination, memory impairment, and blood–brain barrier permeability in a model of sleep apnea." Brain research 1597 (2015): 28-36. https://doi.org/10.1016/j.brainres.2014.11.052

Kerner, Nancy A., and Steven P. Roose. "Obstructive sleep apnea is linked to depression and cognitive impairment: evidence and potential mechanisms." The American Journal of Geriatric Psychiatry 24.6 (2016): 496-508. https://doi.org/10.1016/j.jagp.2016.01.134

Gelener, Pınar, and Fusun Yıldız. "Obstructive Sleep Apnea: A Neurologic Perspective." Airway Diseases. Cham: Springer International Publishing, 2023. 2441-2454. DOI:10.1007/978-3-031-22483-6_130-1

Guillot, Pauline, et al. "‘Selected’Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood–Brain Barrier Function: A Preliminary Report." International Journal of Molecular Sciences 25.20 (2024): 11058. https://doi.org/10.3390/ijms252011058

Ahmad, Abraham Al, et al. "Astrocytes and pericytes differentially modulate blood—brain barrier characteristics during development and hypoxic insult." Journal of Cerebral Blood Flow & Metabolism 31.2 (2011): 693-705. https://doi.org/10.1038/jcbfm.2010.148

Zhou, Junying, et al. "A review of neurocognitive function and obstructive sleep apnea with or without daytime sleepiness." Sleep medicine 23 (2016): 99-108. https://doi.org/10.1016/j.sleep.2016.02.008

Wood, Matthew JA, Aisling J. O ‘Loughlin, and Samira Lakhal. "Exosomes and the blood–brain barrier: implications for neurological diseases." Therapeutic delivery 2.9 (2011): 1095-1099. https://doi.org/10.4155/tde.11.83

Journal of Education, Health and Sport

Downloads

  • PDF

Published

2025-12-19

How to Cite

1.
DZIKI, Karolina, DYBIZBAŃSKA, Wiktoria, GARNCARZ, Katarzyna, BURZEJ, Agnieszka, NOWAKOWSKA, Zofia, JAMROCH, Krzysztof, KACALAK, Mateusz, KOMENDA, Maciej, MAREK, Aleksandra and SZKLARSKA-KOMENDA, Julia. Sleep and Blood-Brain Barrier Integrity - Current Understanding and Biological Mechanisms: Literature Review. Journal of Education, Health and Sport. Online. 19 December 2025. Vol. 86, p. 66821. [Accessed 21 December 2025]. DOI 10.12775/JEHS.2025.86.66821.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 86 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Karolina Dziki, Wiktoria Dybizbańska, Katarzyna Garncarz, Agnieszka Burzej, Zofia Nowakowska, Krzysztof Jamroch, Mateusz Kacalak, Maciej Komenda, Aleksandra Marek, Julia Szklarska-Komenda

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 14
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

blood-brain barrier, sleep, sleep deprivation, sleep loss, circadian rhythm, glymphatic system, oxidative stress, obstructive sleep apnea syndrome
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop