Artificial Intelligence in Pulmonary Imaging: A Review of Techniques
DOI:
https://doi.org/10.12775/JEHS.2025.85.66817Keywords
artificial intelligence, pulmonary imaging, deep learning, radiology, medical image analysis, lung diseases, computer-aided diagnosis, thoracic imaging, clinical decision supportAbstract
Introduction and Purpose
The use of artificial intelligence (AI) in medical imaging has grown significantly in recent years, especially in the area of pulmonary imaging. AI systems have shown promising performance in a variety of thoracic imaging tasks, such as nodule detection, classification of interstitial lung diseases, and prognostic modeling. The purpose of this review is to provide a comprehensive overview of the current state of AI applications in pulmonary imaging, and to highlight clinical use cases, significant technological advancements.
Materials and Methods
This review is based on a comprehensive analysis of scientific literature from scientific databases (PubMed, Scopus, Web of Science, and IEEE Xplore), selected based on their citation impact, scientific quality, and relevance to the topic of AI in pulmonary imaging.
Results
An analysis of selected literature has revealed the rapid development of AI applications in pulmonary imaging in recent years. The identified studies cover a wide range of topics, from diagnostic support and automated lesion detection to segmentation of anatomical structures and prognostic modeling. The overwhelming majority of publications have demonstrated the high performance of algorithms for specific imaging tasks. Many have compared AI performance to that of radiologists, often indicating comparable or superior precision.
Conclusion
In pulmonary imaging, AI holds great promise for enhancing diagnostic precision, effectiveness, and decision support. The majority of models are still in the experimental stage, despite numerous studies reporting high performance, particularly in detection and classification tasks. Additional validation, standardization, and consideration of ethical issues are required to facilitate clinical adoption.
References
1. Litjens G, Kooi T, Bejnordi BE, et al. A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis. 2017;42(1):60-88. doi:https://doi.org/10.1016/j.media.2017.07.005
2. Li R, Xiao C, Huang Y, Hassan H, Huang B. Deep Learning Applications in Computed Tomography Images for Pulmonary nodule detection and diagnosis: a review. Diagnostics. 2022;12(2):298. doi:10.3390/diagnostics12020298
3. Liu B, Chi W, Li X, et al. Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades’ development course and future prospect. Journal of Cancer Research and Clinical Oncology. 2019;146(1):153-185. doi:https://doi.org/10.1007/s00432-019-03098-5
4. Zhang J, Xia Y, Cui H, Zhang Y. Pulmonary nodule detection in medical images: A survey. Biomedical Signal Processing and Control. 2018;43:138-147. doi:https://doi.org/10.1016/j.bspc.2018.01.011
5. Farhat H, Sakr GE, Kilany R. Deep learning applications in pulmonary medical imaging: recent updates and insights on COVID-19. Machine Vision and Applications. 2020;31(6). doi:https://doi.org/10.1007/s00138-020-01101-5
6. Verma P, Dumka A, Singh R, et al. A Deep Learning Based Approach for Patient Pulmonary CT Image Screening to Predict Coronavirus (SARS-CoV-2) Infection. Diagnostics. 2021;11(9):1735. doi:https://doi.org/10.3390/diagnostics11091735
7. Turing A. Computing Machinery and Intelligence. Mind. 1950;59(236):433-460. doi:https://doi.org/10.1093/mind/LIX.236.433
8. Samuel AL. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development. 1959;3(3):210-229. doi:https://doi.org/10.1147/rd.33.0210
9. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 1958;65(6):386-408. doi:https://doi.org/10.1037/h0042519
10. LeCun Y, Boser B, Denker JS, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation. 1989;1(4):541-551. doi:https://doi.org/10.1162/neco.1989.1.4.541
11. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533-536. doi:https://doi.org/10.1038/323533a0
12. Bishop CM. Neural networks and their applications. Review of Scientific Instruments. 1994;65(6):1803-1832. doi:https://doi.org/10.1063/1.1144830
13. Nair V, Hinton G. Rectified Linear Units Improve Restricted Boltzmann Machines.; 2010. https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
14. Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273-297. doi:https://doi.org/10.1007/BF00994018
15. Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32. doi:https://doi.org/10.1023/a:1010933404324
16. Ho TK. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998;20(8):832-844. doi:https://doi.org/10.1109/34.709601
17. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(1):1-42. doi:https://doi.org/10.1162/neco.1997.9.1.1
18. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014;15(56):1929-1958. https://jmlr.org/papers/v15/srivastava14a.html
19. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv.org. Published 2015. https://arxiv.org/abs/1502.03167
20. Hinton GE, Osindero S, Teh YW. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. 2006;18(7):1527-1554. doi:https://doi.org/10.1162/neco.2006.18.7.1527Hurt B, Yen A, Kligerman S, Hsiao A. Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps. Journal of Thoracic Imaging. 2020;35(5):285-293. doi:https://doi.org/10.1097/rti.0000000000000505
21. Nair RR, S K, Babu T, S VV. Enhancing Chest X-ray Pathology Prediction through Data-Driven Approaches and Transfer Learning. Procedia Computer Science. 2025;258:3447-3456. doi:https://doi.org/10.1016/j.procs.2025.04.601
22. Souid A, Sakli N, Sakli H. Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2. Applied Sciences. 2021;11(6):2751. doi:https://doi.org/10.3390/app11062751
23. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging. 2017;30(4):449-459. doi:https://doi.org/10.1007/s10278-017-9983-4
24. Baumgartner CF, Koch LM, Pollefeys M, Ender Konukoğlu. An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation. Lecture Notes in Computer Science. Published online January 1, 2018:111-119. doi:https://doi.org/10.1007/978-3-319-75541-0_12
25. Hammad M, ElAffendi M, Abd AA, Ateya AA, Ali G, Pawel Plawiak. Explainable AI for lung cancer detection via a custom CNN on CT images. Scientific Reports. 2025;15(1). doi:https://doi.org/10.1038/s41598-025-97645-5
26. Wu D, Chen P, Wang X, et al. Real-time High-resolution X-Ray Computed Tomography. Proceedings of the 38th ACM International Conference on Supercomputing. Published online May 30, 2024:110-123. doi:https://doi.org/10.1145/3650200.3656634
27. Ding Y, Sohn JH, Kawczynski MG, et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. Radiology. 2019;290(2):456-464. doi:https://doi.org/10.1148/radiol.2018180958
28. Baloescu C, Bailitz J, Cheema B, et al. Artificial Intelligence–Guided Lung Ultrasound by Nonexperts. JAMA Cardiology. Published online January 15, 2025. doi:https://doi.org/10.1001/jamacardio.2024.4991
29. Steinberg JS, Auge J, Fleckenstein M, Holz FG, Steffen Schmitz-Valckenberg. Longitudinal Analysis of Reticular Drusen Associated with Age-Related Macular Degeneration Using Combined Confocal Scanning Laser Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography Imaging. Ophthalmologica. 2014;233(1):35-42. doi:https://doi.org/10.1159/000368168
30. Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey. Machine Vision and Applications. 2020;31(1-2). doi:https://doi.org/10.1007/s00138-020-01060-x
31. Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for pulmonary medical imaging. Frontiers of Medicine. 2019;14(4):450-469. doi:https://doi.org/10.1007/s11684-019-0726-4
32. McBee MP, Awan OA, Colucci AT, et al. Deep Learning in Radiology. Academic Radiology. 2018;25(11):1472-1480. doi:https://doi.org/10.1016/j.acra.2018.02.018
33. Gu Y, Chi J, Liu J, et al. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Computers in Biology and Medicine. 2021;137:104806. doi:https://doi.org/10.1016/j.compbiomed.2021.104806
34. Li R, Xiao C, Huang Y, Hassan H, Huang B. Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review.
35. Raina R, Madhavan A, Ng AY. Large-scale deep unsupervised learning using graphics processors. Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09. Published online 2009. doi:https://doi.org/10.1145/1553374.1553486
36. Cireşan DC, Meier U, Gambardella LM, Schmidhuber J. Deep, Big, Simple Neural Nets for Handwritten Digit Recognition. Neural Computation. 2010;22(12):3207-3220. doi:https://doi.org/10.1162/neco_a_00052
37. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM. 2012;60(6):84-90. https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
38. Mohamed A, Dahl GE, Hinton G. Acoustic Modeling Using Deep Belief Networks. IEEE Transactions on Audio, Speech, and Language Processing. 2012;20(1):14-22. doi:https://doi.org/10.1109/tasl.2011.2109382
39. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need.; 2017.
doi:https://doi.org/10.48550/arXiv.1706.03762
40. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv. Published October 11, 2018. https://arxiv.org/abs/1810.04805
41. OpenAI. GPT-4 Technical Report. arXiv:230308774 [cs]. Published online March 15, 2023. doi:https://doi.org/10.48550/arXiv.2303.08774
42. Shiraishi J, Katsuragawa S, Ikezoe J, et al. Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule. American Journal of Roentgenology. 2000;174(1):71-74. doi:https://doi.org/10.2214/ajr.174.1.1740071
43. Armato SG, McLennan G, Bidaut L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical physics. 2011;38(2):915-931. doi:https://doi.org/10.1118/1.3528204
44. Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery. 2014;4(6):475-477. doi:https://doi.org/10.3978/j.issn.2223-4292.2014.11.20
45. Costa M, Cicero, Kimura A, Levy PC, Xavier CM, Fujimoto LB. A sputum smear microscopy image database for automatic bacilli detection in conventional microscopy. International Conference of the IEEE Engineering in Medicine and Biology Society. Published online November 6, 2014. doi:https://doi.org/10.1109/embc.2014.6944215
46. Edwards N, Oberti M, Thangudu RR, et al. The CPTAC Data Portal: A Resource for Cancer Proteomics Research. Journal of Proteome Research. 2015;14(6):2707-2713. doi:https://doi.org/10.1021/pr501254j
47. Grossman RL, Heath AP, Ferretti V, et al. Toward a Shared Vision for Cancer Genomic Data. New England Journal of Medicine. 2016;375(12):1109-1112. doi:https://doi.org/10.1056/nejmp1607591
48. Wang X, Peng Y, Lu L, Lu Z, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. doi:https://doi.org/10.48550/arXiv.1705.02315
49. Kermany D, Zhang K, Goldbaum M. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. datamendeleycom. 2018;2. doi:https://doi.org/10.17632/rscbjbr9sj.2
50. Kermany DS, Goldbaum M, Cai W, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122-1131.e9. doi:https://doi.org/10.1016/j.cell.2018.02.010
51. Masoudi M, Pourreza HR, Saadatmand-Tarzjan M, Eftekhari N, Zargar FS, Rad MP. A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism. Scientific Data. 2018;5(1). doi:https://doi.org/10.1038/sdata.2018.180
52. Radiological Society of North America. RSNA Pneumonia Detection Challenge. Kaggle. Accessed July 1, 2025. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
53. Irvin J, Rajpurkar P, Ko M, et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:590-597. doi:https://doi.org/10.1609/aaai.v33i01.3301590
54. Pan I, Agarwal S, Merck D. Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks. Journal of Digital Imaging. 2019;32(5):888-896. doi:https://doi.org/10.1007/s10278-019-00180-9
55. Borkowski AA, Bui MM, L. Brannon Thomas, Wilson CP, DeLand LA, Mastorides SM. Lung and Colon Cancer Histopathological Image Dataset (LC25000). arXiv (Cornell University). Published online January 1, 2019. doi:https://doi.org/10.48550/arxiv.1912.12142
56. Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data. 2019;6(1):317. doi:https://doi.org/10.1038/s41597-019-0322-0
57. Cid D, Liauchuk V, Klimuk D, Tarasau A, Kovalev V, Müller H. Overview of ImageCLEFtuberculosis 2019 : automatic CT-based report generation and tuberculosis severity assessment. Proceedings of CLEF (Conference and Labs of the Evaluation Forum) 2019 Working Notes. Published 2019. Accessed July 1, 2025. https://arodes.hes-so.ch/record/4264?v=pdf
58. Kozlovski S, Liauchuk V, Cid D, Tarasau A, Kovalev V, Müller H. Overview of ImageCLEF tuberculosis 2020 automatic CT-based report generation. Proceedings of the CLEF 2020 - Conference and labs of the evaluation forum. Published 2020. Accessed July 1, 2025. https://arodes.hes-so.ch/record/6452
59. Dadario Andrew M V. COVID-19 X rays. Kaggle. Published 2020. Accessed July 1, 2025. https://www.kaggle.com/datasets/andrewmvd/convid19-x-rays
60. Chowdhury MEH, Rahman T, Khandakar A, et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access. 2020;8:132665-132676. doi:https://doi.org/10.1109/access.2020.3010287
61. Bustos A, Pertusa A, Salinas JM, de la Iglesia-Vayá M. PadChest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis. 2020;66:101797. doi:https://doi.org/10.1016/j.media.2020.101797
62. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. arXiv:200611988 [cs, eess, q-bio]. Published online December 14, 2020. https://arxiv.org/abs/2006.11988
63. Sajid N. COVID-19 Patients Lungs X ray Images 10000. Kaggle. Accessed July 1, 2025. https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images
64. Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection. arXiv:200311597 [cs, eess, q-bio]. Published online March 25, 2020. https://arxiv.org/abs/2003.11597
65. Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports. 2020;10(1). doi:https://doi.org/10.1038/s41598-020-76550-z
66. Rahman T, Khandakar A, Qiblawey Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine. 2021;132:104319. doi:https://doi.org/10.1016/j.compbiomed.2021.104319
67. Shakouri S, Bakhshali MA, Layegh P, et al. COVID19-CT-dataset: an open-access chest CT image repository of 1000+ patients with confirmed COVID-19 diagnosis. BMC Research Notes. 2021;14(1). doi:https://doi.org/10.1186/s13104-021-05592-x
68. Zhou Y, Huang SC, Fries JA, et al. RadFusion: Benchmarking Performance and Fairness for Multimodal Pulmonary Embolism Detection from CT and EHR. arXiv.org. Published 2021. Accessed July 1, 2025. https://arxiv.org/abs/2111.11665
69. Nguyen HQ, Lam K, Le L, et al. VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. Scientific Data. 2022;9(1). doi:https://doi.org/10.1038/s41597-022-01498-w
70. Pham HH, Ngoc Huy Nguyen, Thanh Tung Tran, Tuan Ngoc-Minh Nguyen, Nguyen HQ. PediCXR: An open, large-scale chest radiograph dataset for interpretation of common thoracic diseases in children. Scientific Data. 2023;10(1). doi:https://doi.org/10.1038/s41597-023-02102-5
71. Diosdado J, Pere Gilabert, Santi Seguí, Borrego H. LungHist700: A dataset of histological images for deep learning in pulmonary pathology. Scientific Data. 2024;11(1). doi:https://doi.org/10.1038/s41597-024-03944-3
72. Etter L, Betke M, Camelo IY, et al. Curated and Annotated Dataset of Lung US Images of Zambian Children with Clinical Pneumonia. Radiology. Published online February 21, 2024. doi:https://doi.org/10.1148/ryai.230147
73. Huang SC, Huo Z, Steinberg E, et al. INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and Prognosis. arXiv.org. Published 2023. https://arxiv.org/abs/2311.10798
74. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians. 2017;67(1):7-30. doi:https://doi.org/10.3322/caac.21387
75. Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Scientific Reports. 2017;7(1). doi:https://doi.org/10.1038/srep46479
76. Liu L, Dou Q, Chen H, Qin J, Heng PA. Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis. IEEE Transactions on Medical Imaging. 2020;39(3):718-728. doi:https://doi.org/10.1109/tmi.2019.2934577
77. Li W, Cao P, Zhao D, Wang J. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images. Computational and Mathematical Methods in Medicine. 2016;2016:1-7. doi:https://doi.org/10.1155/2016/6215085
78. Pei X, Guo H, Dai J. Computerized Detection of Lung Nodules in CT Images by Use of Multiscale Filters and Geometrical Constraint Region Growing. 2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE. 2010: 1-4. doi:https://doi.org/10.1109/ICBBE.2010.5517771
79. Sadgal M, M. Raafat, Yehia S, Khalil MM. Efficient pulmonary nodules classification using radiomics and different artificial intelligence strategies. Insights Into Imaging. 2023;14(1). doi:https://doi.org/10.1186/s13244-023-01441-6
80. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end Lung Cancer Screening with three-dimensional Deep Learning on low-dose Chest Computed Tomography. Nature Medicine. 2019;25(6):954-961. doi:https://doi.org/10.1038/s41591-019-0447-x
81. Ding J, Li A, Hu Z, Wang L. Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks. Published online September 10, 2017:559-567. doi:https://doi.org/10.1007/978-3-319-66179-7_64
82. Winkels M, Cohen TS. 3D G-CNNs for Pulmonary Nodule Detection. arXiv.org. Published 2018. Accessed July 1, 2025. https://arxiv.org/abs/1804.04656
83. Zhu W, Liu C, Fan W, Xie X. DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification. arXiv.org. Published 2017. https://arxiv.org/abs/1709.05538
84. Jia R, Liu B, Ali M. Establishing an AI-based diagnostic framework for pulmonary nodules in computed tomography. BMC Pulmonary Medicine. 2025;25(1). doi:https://doi.org/10.1186/s12890-025-03806-7
85. Xie Z. Towards Single-phase Single-stage Detection of Pulmonary Nodules in Chest CT Imaging. arXiv.org. Published 2018. Accessed July 1, 2025. https://arxiv.org/abs/1807.05972
86. Ma J, Li X, Li H, et al. Group-Attention Single-Shot Detector (GA-SSD): Finding Pulmonary Nodules in Large-Scale CT Images. arXiv.org. Published 2018. Accessed July 1, 2025. https://arxiv.org/abs/1812.07166
87. Liu K, Li Q, Ma J, et al. Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance. Radiology: Artificial Intelligence. 2019;1(3):e180084. doi:https://doi.org/10.1148/ryai.2019180084
88. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science. 2015;9351:234-241. doi:https://doi.org/10.1007/978-3-319-24574-4_28
89. Messay T, Hardie RC, Tuinstra TR. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Medical Image Analysis. 2015;22(1):48-62. doi:https://doi.org/10.1016/j.media.2015.02.002
90. Vainio T, Mäkelä T, Savolainen S, Kangasniemi M. Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study. European Radiology Experimental. 2021;5(1). doi:https://doi.org/10.1186/s41747-021-00235-z
91. Khan M, Shah PM, Khan IA, et al. IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning. Sensors. 2023;23(3):1471. doi:https://doi.org/10.3390/s23031471
92. Ma X, Ferguson EC, Jiang X, Savitz SI, Shams S. A multitask deep learning approach for pulmonary embolism detection and identification. Scientific Reports. 2022;12(1). doi:https://doi.org/10.1038/s41598-022-16976-9
93. Vainio T, Mäkelä T, Arkko A, Savolainen S, Kangasniemi M. Leveraging open dataset and transfer learning for accurate recognition of chronic pulmonary embolism from CT angiogram maximum intensity projection images. European Radiology Experimental. 2023;7(1):33. doi:https://doi.org/10.1186/s41747-023-00346-9
94. Bird E, Hasenstab K, Kim N, et al. Mapping the Spatial Extent of Hypoperfusion in Chronic Thromboembolic Pulmonary Hypertension Using Multienergy CT. Radiol Cardiothorac Imaging. 2023;5(4):e220221. Published 2023 Aug 10. doi:10.1148/ryct.220221
95. Tobias RRNMI, De Jesus LCM, Mital MEG, et al. CNN-based Deep Learning Model for Chest X-ray Health Classification Using TensorFlow. IEEE Xplore. doi:https://doi.org/10.1109/RIVF48685.2020.9140733
96. Stephen O, Sain M, Maduh UJ, Jeong DU. An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of Healthcare Engineering. 2019;2019:1-7. doi:https://doi.org/10.1155/2019/4180949
97. Ayan E, Ünver HM. Diagnosis of Pneumonia from Chest X-Ray Images Using Deep Learning. IEEE Xplore. doi:https://doi.org/10.1109/EBBT.2019.8741582
98. Rahman T, Chowdhury MEH, Khandakar A, et al. Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-ray. Applied Sciences. 2020;10(9):3233. doi:https://doi.org/10.3390/app10093233
99. Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv.org. Published 2017. https://arxiv.org/abs/1711.05225
100. Hashmi MF, Katiyar S, Keskar AG, Bokde ND, Geem ZW. Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning. Diagnostics. 2020;10(6):417. doi:https://doi.org/10.3390/diagnostics10060417
101. Acharya AK, Satapathy R. A Deep Learning Based Approach towards the Automatic Diagnosis of Pneumonia from Chest Radio-Graphs. Biomedical and Pharmacology Journal. 2020;13(1):449-455. doi:https://doi.org/10.13005/bpj/1905
102. Elshennawy NM, Ibrahim DM. Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images. Diagnostics (Basel). 2020;10(9):649. Published 2020 Aug 28. doi:10.3390/diagnostics10090649
103. Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJPC. Identifying pneumonia in chest X-rays: A deep learning approach. Measurement. 2019;145:511-518. doi:https://doi.org/10.1016/j.measurement.2019.05.076
104. Antunes C, Rodrigues F, Cunha A. PneumoNet: Artificial Intelligence Assistance for Pneumonia Detection on X-Rays. Applied Sciences. 2025;15(13):7605-7605. doi:https://doi.org/10.3390/app15137605
105. Murphy K, Habib SS, Zaidi SMA, et al. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Scientific Reports. 2020;10(1). doi:https://doi.org/10.1038/s41598-020-62148-y
106. Melendez J, Sánchez CI, Philipsen RHHM, et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports. 2016;6(1). doi:https://doi.org/10.1038/srep25265
107. Heo SJ, Kim Y, Yun S, et al. Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers’ Health Examination Data. International Journal of Environmental Research and Public Health. 2019;16(2):250. doi:https://doi.org/10.3390/ijerph16020250
108. Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Scientific Reports. 2019;9(1). doi:https://doi.org/10.1038/s41598-019-42557-4
109. Andika LA, Pratiwi H, Sulistijowati Handajani S. Convolutional neural network modeling for classification of pulmonary tuberculosis disease. Journal of Physics: Conference Series. 2020;1490(1):012020. doi:https://doi.org/10.1088/1742-6596/1490/1/012020
110. Stirenko S, Kochura Y, Alienin O, et al. Chest X-Ray Analysis of Tuberculosis by Deep Learning with Segmentation and Augmentation. IEEE Xplore. doi:https://doi.org/10.1109/ELNANO.2018.8477564
111. Ul Abideen Z, Ghafoor M, Munir K, et al. Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks. IEEE Access. 2020;8:22812-22825. doi:https://doi.org/10.1109/access.2020.2970023
112. Hwang S, Kim HE, Jeong J, Kim HJ. A novel approach for tuberculosis screening based on deep convolutional neural networks. SPIE. 2016;9785:97852W. doi:https://doi.org/10.1117/12.2216198
113. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017;284(2):574-582. doi:https://doi.org/10.1148/radiol.2017162326
114. Islam MT, Aowal, Md Abdul, Minhaz AT, Ashraf K. Abnormality Detection and Localization in Chest X-Rays using Deep Convolutional Neural Networks. arXiv.org. Published 2017. https://arxiv.org/abs/1705.09850
115. Lopes UK, Valiati JF. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med. 2017;89:135-143. doi:10.1016/j.compbiomed.2017.08.001
116. Rajaraman S, Antani SK. Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs. IEEE Access. 2020;8:27318-27326. doi:10.1109/access.2020.2971257
117. Sivaramakrishnan Rajaraman, Sema Candemir, Xue Z, et al. A novel stacked generalization of models for improved TB detection in chest radiographs. Published online July 18, 2018. doi:https://doi.org/10.1109/embc.2018.8512337
118. Rashid RS, Sajid Gul Khawaja, Akram M, Khan AU. Hybrid RID Network for Efficient Diagnosis of Tuberculosis from Chest X-rays. Cairo International Biomedical Engineering Conference. Published online December 1, 2018. doi:https://doi.org/10.1109/cibec.2018.8641816
119. Li L, Huang H, Jin X. AE-CNN Classification of Pulmonary Tuberculosis Based on CT Images. Published online October 1, 2018:39-42. doi:https://doi.org/10.1109/itme.2018.00020
120. Gao XW, James-Reynolds C, Currie E. Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing. 2020;392:233-244. doi:https://doi.org/10.1016/j.neucom.2018.12.086
121. Llopis F, Fuster-Guilló A, Azorín-López J, Llopis I. Using Improved Optical Flow Model to Detect Tuberculosis. Accessed July 1, 2025. https://ceur-ws.org/Vol-2380/paper_143.pdf
122. Yadini Perez Lopez, Ferreira C, Miguel L, Fernandes G. Automatic classification of light field smear microscopy patches using Convolutional Neural Networks for identifying mycobacterium tuberculosis. Published online October 1, 2017. doi:https://doi.org/10.1109/chilecon.2017.8229512
123. Panicker RO, Kalmady KS, Rajan J, Sabu MK. Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybernetics and Biomedical Engineering. 2018;38(3):691-699. doi:https://doi.org/10.1016/j.bbe.2018.05.007
124. Mithra KS, Sam Emmanuel WR. Automated identification of mycobacterium bacillus from sputum images for tuberculosis diagnosis. Signal, Image and Video Processing. Published online June 5, 2019. doi:https://doi.org/10.1007/s11760-019-01509-1
125. Dinesh Jackson Samuel R, Rajesh Kanna B. Tuberculosis (TB) detection system using deep neural networks. Neural Computing and Applications. 2018;31(5):1533-1545. doi:https://doi.org/10.1007/s00521-018-3564-4
126. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. doi:https://doi.org/10.1016/s0140-6736(20)30183-5
127. Shibly KH, Dey SK, Islam MTU, Rahman MM. COVID faster R–CNN: A novel framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray images. Informatics in Medicine Unlocked. 2020;20:100405. doi:https://doi.org/10.1016/j.imu.2020.100405
128. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys Eng Sci Med. 2020;43(3):915-925. doi:10.1007/s13246-020-00888-x
129. Zhu J, Shen B, Abbasi A, Hoshmand-Kochi M, Li H, Duong TQ. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. Singh D, ed. PLOS ONE. 2020;15(7):e0236621. doi:https://doi.org/10.1371/journal.pone.0236621
130. Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;43(2):635-640. doi:10.1007/s13246-020-00865-4
131. Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications. 2021;24. doi:https://doi.org/10.1007/s10044-021-00984-y
132. Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports. 2020;10(1). doi:https://doi.org/10.1038/s41598-020-76550-z
133. Alazab M, Awajan A, Mesleh A, Alhyari A. COVID-19 Prediction and Detection Using Deep Learning. International Journal of Computer Information Systems and Industrial Management Applications. 2020;12:14-14. Accessed July 1, 2025. https://cspub-ijcisim.org/index.php/ijcisim/article/view/451
134. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. CovidGAN: Data Augmentation using Auxiliary Classifier GAN for Improved Covid-19 Detection. IEEE Access. Published online 2020:1-1. doi:https://doi.org/10.1109/ACCESS.2020.2994762
135. Ouyang X, Huo J, Xia L, et al. Dual-Sampling Attention Network for Diagnosis of COVID-19 From Community Acquired Pneumonia. IEEE Transactions on Medical Imaging. 2020;39(8):2595-2605. doi:https://doi.org/10.1109/tmi.2020.2995508
136. Mahmud T, Rahman MA, Fattah SA. CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;122:103869. doi:10.1016/j.compbiomed.2020.103869
137. Shi F, Xia L, Shan F, et al. Large-Scale Screening of COVID-19 from Community Acquired Pneumonia using Infection Size-Aware Classification. arXiv:200309860 [cs, eess]. Published online March 22, 2020. https://arxiv.org/abs/2003.09860
138. Gozes O, Frid-Adar M, Greenspan H, et al. Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis. arXiv:200305037 [cs, eess]. Published online March 24, 2020. https://arxiv.org/abs/2003.05037
139. Xu X, Jiang X, Ma C, et al. A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering. Published online June 2020. doi:https://doi.org/10.1016/j.eng.2020.04.010
140. Singh D, Kumar V, Vaishali, Kaur M. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases. Published online April 27, 2020:1-11. doi:https://doi.org/10.1007/s10096-020-03901-z
141. Sedik A, Iliyasu AM, Abd El-Rahiem B, et al. Deploying Machine and Deep Learning Models for Efficient Data-Augmented Detection of COVID-19 Infections. Viruses. 2020;12(7):769. doi:https://doi.org/10.3390/v12070769
142. Ahsan MM, E. Alam T, Trafalis T, Huebner P. Deep MLP-CNN Model Using Mixed-Data to Distinguish between COVID-19 and Non-COVID-19 Patients. Symmetry. 2020;12(9):1526. doi:https://doi.org/10.3390/sym12091526
143. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images. Pattern Recognit Lett. 2020;138:638-643. doi:10.1016/j.patrec.2020.09.010
144. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Transactions on Medical Imaging. 2016;35(5):1207-1216. doi:https://doi.org/10.1109/TMI.2016.2535865
145. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv.org. Published April 10, 2015. https://arxiv.org/abs/1409.1556
146. Li NQ, Cai NW, Feng DD. Lung image patch classification with automatic feature learning. PubMed. Published online July 1, 2013. doi:https://doi.org/10.1109/embc.2013.6610939
147. Li Q, Cai W, Wang X, Zhou Y, Feng DD, Chen M. Medical image classification with convolutional neural network. 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). Published online December 2014. doi:https://doi.org/10.1109/icarcv.2014.7064414
148. Gao M, Xu Z, Lu L, Harrison AP, Summers RM, Mollura DJ. Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection. Lecture Notes in Computer Science. Published online January 1, 2016:147-155. doi:https://doi.org/10.1007/978-3-319-47157-0_18
149. Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis. IEEE Journal of Biomedical and Health Informatics. 2017;21(1):76-84. doi:https://doi.org/10.1109/jbhi.2016.2636929
150. Gao M, Bagci U, Lu L, et al. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2016;6(1):1-6. doi:https://doi.org/10.1080/21681163.2015.1124249
151. Gündel S, Grbic S, Georgescu B, Liu S, Maier A, Comaniciu D. Learning to Recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Published online 2019:757-765. doi:https://doi.org/10.1007/978-3-030-13469-3_88
152. Soysal OA, Guzel MS, Dikmen M, Bostanci GE. Common Thorax Diseases Recognition Using Zero-Shot Learning With Ontology in the Multi-Labeled ChestX-ray14 Data Set. IEEE Access. 2023;11:27883-27892. doi:https://doi.org/10.1109/access.2023.3259062
153. Smit A, Jain S, Pranav Rajpurkar, Anuj Pareek, Ng AY, Lungren MP. Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT. Published online January 1, 2020. doi:https://doi.org/10.18653/v1/2020.emnlp-main.117
154. Tiu E, Talius E, Patel P, Langlotz CP, Ng AY, Rajpurkar P. Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning. Nature Biomedical Engineering. Published online September 15, 2022. doi:https://doi.org/10.1038/s41551-022-00936-9
155. Nie W, Zhang C, Song D, Bai Y, Xie K, Liu A. Instrumental Variable Learning for Chest X-ray Classification. 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Published online October 1, 2023:4506-4512. doi:https://doi.org/10.1109/smc53992.2023.10394601
156. Seyyed-Kalantari L, Zhang H, McDermott MBA, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nature Medicine. 2021;27(12):2176-2182. doi:https://doi.org/10.1038/s41591-021-01595-0
157. Li R, Mao S, Zhu C, et al. Enhancing Pulmonary Disease Prediction Using Large Language Models with Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study based on Radiology Report (Preprint). Journal of Medical Internet Research. Published online February 13, 2025. doi:https://doi.org/10.2196/72638
158. Wang Z, Liu L, Wang L, Zhou L. R2GenGPT: Radiology Report Generation with Frozen LLMs. Meta-radiology. 2023;1(3):100033-100033. doi:https://doi.org/10.1016/j.metrad.2023.100033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ewelina Jamrozik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 26
Number of citations: 0