The importance of metabolomics in research into pathological processes leading to neurodegenerative diseases
DOI:
https://doi.org/10.12775/JEHS.2025.85.66541Keywords
metabolomics, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, Huntington's disease, metabolic biomarkersAbstract
Objective: The aim of this article is to review and analyse the current state of knowledge on the role of metabolomics in explaining the pathological processes underlying neurodegenerative diseases, in particular Alzheimer's, Parkinson's and Huntington's diseases. The analysis focuses on assessing the potential of this field in discovering early diagnostic biomarkers and identifying new therapeutic targets.
Materials and methods: A systematic review of the scientific literature was conducted using the PubMed, Scopus and Web of Science databases. The analysis included studies using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to profile metabolites in biological fluids (cerebrospinal fluid, plasma) and brain tissue from patients and preclinical models.
Results: Neurodegenerative diseases are characterised by common metabolic disorders, such as mitochondrial dysfunction, impaired energy metabolism and oxidative stress. Disease-specific signatures have also been identified: xanthine metabolism disorders and impaired kynurenine pathway in Parkinson's disease, dysregulation of lipid (including ceramide and sphingolipid) and glucose metabolism in Alzheimer's disease, and early changes in the tryptophan/kynurenine pathway in Huntington's disease.
Conclusions: This work highlights the role of metabolic dysregulation as an early mechanism in the pathogenesis of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Metabolomics enables a systemic view of these disorders as disruptions of complex metabolic networks, providing a comprehensive picture of pathology rather than focusing on individual proteins. Its clinical potential includes the development of non-invasive biomarkers for early diagnosis and disease monitoring. Identification of key metabolic pathways, such as lipid and energy metabolism, also points to new therapeutic targets, forming the basis for precision medicine in neurodegenerative diseases.
References
Alzheimer's Association. (2023). 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 19(4), 1598–1695. https://doi.org/10.1002/alz.13016
Anderson, N. D. (2019). State of the science on mild cognitive impairment (MCI). CNS Spectrums, 24(S1), 78–87. https://doi.org/10.1017/S1092852918001347
Ashton, N. J., Pascoal, T. A., Karikari, T. K., Vrillon, A., Preece, P., Lussier, F., Gonzalez-Escalada, G., Servaes, S., Weston, P., Gauthier, S., Rosa-Neto, P., Zetterberg, H., Blennow, K., & Schöll, M. (2021). A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease. Science Advances, 7(17), eabf6274. https://doi.org/10.1126/sciadv.aau7220
Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5), 200–209. https://doi.org/10.1016/j.tics.2011.03.006
Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M., & Tanner, C. (2024). The epidemiology of Parkinson's disease. The Lancet, 403(10423), 283–292. https://doi.org/10.1016/S0140-6736(23)01419-8
Bertram, L., Lill, C. M., & Tanzi, R. E. (2010). The genetics of Alzheimer's disease: Back to the future. Neuron, 68(2), 270–281. https://doi.orgorg/10.1016/j.neuron.2010.10.013
Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., Begley, P., Carroll, K., Broadhurst, D., Tseng, A., Swainston, N., Spasic, I., Goodacre, R., & Kell, D. B. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. The Analyst, 134(7), 1322–1332. https://doi.org/10.1039/b901179j
Chen, P., & Geng, X. (2023). Research progress on the kynurenine pathway in the prevention and treatment of Parkinson's disease. Journal of enzyme inhibition and medicinal chemistry, 38(1), 2225800. https://doi.org/10.1080/14756366.2023.2225800
Chen, S. D., Li, H. Q., Cui, M., Dong, Q., & Yu, J. T. (2020). Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 15(9), 1081–1094. https://doi.org/10.1080/17460441.2020.1767579
Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261(5123), 921–923. https://doi.org/10.1126/science.8346443
Dong, Y., Song, X., Wang, X., Wang, S., & He, Z. (2024). The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neuroscience & Therapeutics, 30(11), e70060. https://doi.org/10.1111/cns.70060
Fiehn, O. (2002). Metabolomics: The link between genotypes and phenotypes. Plant Molecular Biology, 48(1-2), 155–171. https://doi.org/10.1023/a:1013713905833
Flores-Torres, M. H., Peng, X., Jeanfavre, S., Clish, C., Wang, Y., McCullough, M. L., Healy, B., Schwarzschild, M. A., Bjornevik, K., & Ascherio, A. (2025). Plasma metabolomics profiles in prodromal and clinical Parkinson's disease. Movement Disorders. Advance online publication. https://doi.org/10.1002/mds.30308
Forsyth, D. (2018). Probability and statistics for computer science. Springer Publishing Company.
Geschwind, D. H., & Konopka, G. (2009). Neuroscience in the era of functional genomics and systems biology. Nature, 461(7266), 908–915. https://doi.org/10.1038/nature08537
González-Guevara, E., Cárdenas, G., Pérez-Severiano, F., & Martínez-Lazcano, J. C. (2020). Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington's Disease. Movement disorders : official journal of the Movement Disorder Society, 35(7), 1113–1127. https://doi.org/10.1002/mds.28089
Graham, S. F., Kumar, P., Yilmaz, A., Tibshirani, M., O'Donnell, A., Cedazo-Minguez, A., & Björkhem, I. (2018). Targeted biochemical profiling of brain from Huntington's disease patients reveals novel metabolic pathways of interest. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(9, Part A), 2822–2830. https://doi.org/10.1016/j.bbadis.2018.04.012
Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., & Sperling, R. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018
Jiménez, B., Mirnezami, R., Kinross, J., Cloarec, O., Keun, H. C., Holmes, E., Goldin, R. D., Ziprin, P., Darzi, A., & Nicholson, J. K. (2013). 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic "field-effects" enables colorectal cancer staging and prognostication. Journal of Proteome Research, 12(2), 959–968. https://doi.org/10.1021/pr3010106
Lawson, J. F. (2019). The impacts of plastic on Indonesian migratory birds. Department of Conservation.
Lichtman, J. W., Pfister, H., & Shavit, N. (2014). The big data challenges of connectomics. Nature Neuroscience, 17(11), 1448–1454. https://doi.org/10.1038/nn.3837
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Corso, A., Gussekloo, J., J Jessen, F., Kivimäki, M., Larson, E. B., Mukadam, N., & an Brayne, C. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6
Long, J. M., & Holtzman, D. M. (2019). Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179(2), 312–339. https://doi.org/10.1016/j.cell.2019.09.001
Matthews, K. A., Xu, W., Gaglioti, A. H., Holt, J. B., Keyserling, T. C., Hidden, S. L., & Pletcher, M. J. (2018). The global burden of neurological disorders: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X
Morgan, S., & Orrell, R. W. (2016). Pathogenesis of amyotrophic lateral sclerosis. British Medical Bulletin, 119(1), 87–98. https://doi.org/10.1093/bmb/ldw026
Nichols, E., & Vos, T. (2022). The global burden of dementia: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105–e125.
Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16(9), 373–378. https://doi.org/10.1016/s0167-7799(98)01214-1
Palmqvist, S., Tideman, P., Cullen, N., Zetterberg, H., Blennow, K., Dage, J. L., Stomrud, E., Janelidze, S., Mattsson-Carlgren, N., & Hansson, O. (2021). Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nature Medicine, 27(6), 1034-1042. https://doi.org/10.1038/s41591-021-01348-z
Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: what is it and where are we? The Journal of Clinical Investigation, 111(1), 3–10. https://doi.org/10.1172/JCI17522
Ramautar, R., Mayboroda, O. A., Somsen, G. W., & de Jong, G. J. (2011). CE-MS for metabolomics: Developments and applications in the period 2008-2010. Electrophoresis, 32(1), 52–65. https://doi.org/10.1002/elps.201000378
Sadigh-Eteghad, S., Talebi, M., & Farhoudi, M. (2012). Association of metabolomics and Alzheimer's disease. Journal of the Neurological Sciences, 322(1-2), 86-92.
Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, Okuzumi A, Fukuhara T, Koinuma T, Imamichi Y, et al. Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson's disease. Sci Rep. 2017;7:7328. https://doi.org/10.1038/s41598-017-06767-y
Tang-Wai, D. F., Graff-Radford, N. R., Boeve, B. F., Dickson, D. W., Parisi, J. E., Crook, R., Caselli, R. J., Knopman, D. S., & Petersen, R. C. (2004). Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology, 63(7), 1168–1174. https://doi.org/10.1212/01.wnl.0000140289.18472.15
Tarawneh, R., & Holtzman, D. M. (2012). The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspectives in Medicine, 2(5), a006148. https://doi.org/10.1101/cshperspect.a006148
Tullo, S., Miranda, A. S., Del Cid-Pellitero, E., Lim, M. P., Gallino, D., Attaran, A., Patel, R., Novikov, V., Park, M., Beraldo, F. H., Luo, W., Shlaifer, I., Durcan, T. M., Bussey, T. J., Saksida, L. M., Fon, E. A., Prado, V. F., Prado, M. A. M., & Chakravarty, M. M. (2024). Neuroanatomical and cognitive biomarkers of alpha-synuclein propagation in a mouse model of synucleinopathy prior to onset of motor symptoms. Journal of Neurochemistry, 168(8), 1546–1564. https://doi.org/10.1111/jnc.15967
Veres, G., Molnár, M., Zádori, D., Szentirmai, M., Szalárdy, L., Török, R., Fazekas, E., Ilisz, I., Vécsei, L., & Klivényi, P. (2015). Central nervous system-specific alterations in the tryptophan metabolism in the 3-nitropropionic acid model of Huntington's disease. Pharmacology, biochemistry, and behavior, 132, 115–124. https://doi.org/10.1016/j.pbb.2015.03.002
Vermunt, L., Sikkes, S. A. M., van den Hout, A., Handels, R., Bos, I., van der Flier, W. M., Kern, S., Ousset, P. J., Maruff, P., Skoog, I., Verhey, F. R. J., Freund-Levi, Y., Tsolaki, M., Wallin, A., & Visser, P. J. (2019). Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimer's & Dementia, 15(7), 888–898. https://doi.org/10.1016/j.jalz.2019.04.001
Villain, N., Planche, V., Lilamand, M., Cordonnier, C., Soto-Martin, M., Mollion, H., Bombois, S., Delrieu, J., & French Federation of Memory Clinics Work Group on Anti-Amyloid Immunotherapies. (2025). Lecanemab for early Alzheimer's disease: Appropriate use recommendations from the French federation of memory clinics. The Journal of Prevention of Alzheimer's Disease, 12(4), 100094. https://doi.org/10.1016/j.tjpad.2025.100094
Villoslada, P., Steinman, L., & Baranzini, S. E. (2009). Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 65(2), 124–139. https://doi.org/10.1002/ana.21634
Zacharias, H. U., Kaleta, C., Cossais, F., Schaeffer, E., Berndt, H., Best, L., Dost, T., Glüsing, S., Groussin, M., Poyet, M., Heinzel, S., Bang, C., Siebert, L., Demetrowitsch, T., Leypoldt, F., Adelung, R., Bartsch, T., Bosy-Westphal, A., Schwarz, K., & Berg, D. (2022). Microbiome and metabolome insights into the role of the gastrointestinal-brain axis in Parkinson's and Alzheimer's disease: Unveiling potential therapeutic targets. Metabolites, 12(12), 1222. https://doi.org/10.3390/metabo12121222
Zampar, S., Di Gregorio, S. E., Grimmer, G., Watts, J. C., & Ingelsson, M. (2024). Prion-like seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Frontiers in Neuroscience, 18, 1436262. https://doi.org/10.3389/fnins.2024.1436262
Zheng, Q., & Wang, X. (2025). Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein & Cell, 16(2), 83–120. https://doi.org/10.1093/procel/pwae026
Zou, X., Zou, G., Zou, X., Wang, K., & Chen, Z. (2024). Gut microbiota and its metabolites in Alzheimer's disease: from pathogenesis to treatment. PeerJ, 12, e17061. https://doi.org/10.7717/peerj.17061
Books and monographs
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., McNamara, J. O., & White, L. E. (Eds.). (2008). Neuroscience (4th ed.). Sinauer Associates.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Wajda, Wiktoria Mika, Justyna Słowik, Izabela Sieradzka

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 100
Number of citations: 0