Molecular and Immunological Mechanisms Linking EBV Infection to Multiple Sclerosis: Literature Review
DOI:
https://doi.org/10.12775/JEHS.2025.85.66520Keywords
Epstein-Barr virus, multiple sclerosis, EBNA1, molecular mimicry, HLA-DRB1*15:01, autoimmunity, B cells, T cells, neuroinflammation, immunotherapyAbstract
Background: Epstein–Barr virus (EBV), a ubiquitous herpesvirus, has been increasingly implicated as a key environmental factor in the pathogenesis of multiple sclerosis (MS). Nearly all individuals with MS are EBV-seropositive and mounting epidemiological and immunological evidence suggests a causal relationship.
Objective: This review aims to summarize current knowledge on the potential mechanisms by which EBV infection contributes to MS development, with a particular focus on immunopathology, genetic susceptibility and therapeutic implications.
Methods: A literature search was conducted using PubMed, Google Scholar, and ResearchGate. Key terms included “Epstein–Barr virus,” “EBV,” “multiple sclerosis,” “EBNA1,” “molecular mimicry,” “autoimmunity,” and “HLA-DRB1*15:01.” Studies published between 2005 and 2024 were reviewed, with emphasis on high-impact research articles and recent findings.
Results: Several mechanisms have been proposed to explain the association between EBV and MS, including molecular mimicry between viral and CNS antigens, chronic latent infection of B cells, and the activation of autoreactive T cells in genetically predisposed individuals. The strong association with the HLA-DRB1*15:01 allele suggests a gene–environment interaction facilitating aberrant antigen presentation and loss of tolerance. Emerging therapies targeting EBV, including EBV-specific T cell immunotherapy and vaccination strategies offer promising avenues for disease modification.
Conclusion: EBV likely plays a crucial role in MS pathogenesis, acting as a trigger of autoimmunity in susceptible individuals. Understanding the mechanisms of EBV-mediated immune dysregulation may enable the development of more targeted and preventive treatments for MS.
References
Kuchroo, V. K., & Weiner, H. L. (2022). How does Epstein-Barr virus trigger MS?. Immunity, 55(3), 390–392. https://doi.org/10.1016/j.immuni.2022.02.008
Lanz, T. V., Brewer, R. C., Ho, P. P., Moon, J. S., Jude, K. M., Fernandez, D., Fernandes, R. A., Gomez, A. M., Nadj, G. S., Bartley, C. M., Schubert, R. D., Hawes, I. A., Vazquez, S. E., Iyer, M., Zuchero, J. B., Teegen, B., Dunn, J. E., Lock, C. B., Kipp, L. B., Cotham, V. C., … Robinson, W. H. (2022). Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 603(7900), 321–327. https://doi.org/10.1038/s41586-022-04432-7
Guan, Y., Jakimovski, D., Ramanathan, M., Weinstock-Guttman, B., & Zivadinov, R. (2019). The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural regeneration research, 14(3), 373–386. https://doi.org/10.4103/1673-5374.245462
Soldan, S. S., & Lieberman, P. M. (2023). Epstein-Barr virus and multiple sclerosis. Nature reviews. Microbiology, 21(1), 51–64. https://doi.org/10.1038/s41579-022-00770-5
Lupo, J., Truffot, A., Andreani, J., Habib, M., Epaulard, O., Morand, P., & Germi, R. (2023). Virological Markers in Epstein-Barr Virus-Associated Diseases. Viruses, 15(3), 656. https://doi.org/10.3390/v15030656
Robinson, W. H., & Steinman, L. (2022). Epstein-Barr virus and multiple sclerosis. Science (New York, N.Y.), 375(6578), 264–265. https://doi.org/10.1126/science.abm7930
Hedström A. K. (2023). Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Frontiers in immunology, 14, 1212676. https://doi.org/10.3389/fimmu.2023.1212676
Rasheed, A., & Khan, G. (2024). Epstein-Barr virus, vitamin D and the immune response: connections with consequences for multiple sclerosis. Frontiers in immunology, 15, 1503808. https://doi.org/10.3389/fimmu.2024.1503808
Lanz, T.V., Robinson, W.H., Ho, P.P. and Steinman, L. (2023), Roadmap for understanding mechanisms on how Epstein–Barr virus triggers multiple sclerosis and for translating these discoveries in clinical trials. Clin Transl Immunol, 12: e1438. https://doi.org/10.1002/cti2.1438
Morawiec, N.; Adamczyk, B.; Spyra, A.; Herba, M.; Boczek, S.; Korbel, N.; Polechoński, P.; Adamczyk-Sowa, M. The Role of Epstein-Barr Virus in the Pathogenesis of Autoimmune Diseases. Medicina 2025, 61, 1148. https://doi.org/10.3390/medicina61071148
Münz C. (2024). Altered EBV specific immune control in multiple sclerosis. Journal of neuroimmunology, 390, 578343. https://doi.org/10.1016/j.jneuroim.2024.578343
Behrens, M., Comabella, M., & Lünemann, J. D. (2024). EBV-specific T-cell immunity: relevance for multiple sclerosis. Frontiers in immunology, 15, 1509927. https://doi.org/10.3389/fimmu.2024.1509927
Bjornevik, K., Münz, C., Cohen, J. I., & Ascherio, A. (2023). Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nature reviews. Neurology, 19(3), 160–171. https://doi.org/10.1038/s41582-023-00775-5
Du Toit A. (2022). EBV linked to multiple sclerosis. Nature reviews. Microbiology, 20(4), 189. https://doi.org/10.1038/s41579-022-00701-4
Vasileiou, E. S., & Fitzgerald, K. C. (2023). Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Current allergy and asthma reports, 23(9), 481–496. https://doi.org/10.1007/s11882-023-01102-0
SoRelle, E. D., & Luftig, M. A. (2025). Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiology and molecular biology reviews : MMBR, 89(1), e0011923. https://doi.org/10.1128/mmbr.00119-23
Schneider-Hohendorf, T., Wünsch, C., Falk, S., Raposo, C., Rubelt, F., Mirebrahim, H., Asgharian, H., Schlecht, U., Mattox, D., Zhou, W., Dawin, E., Pawlitzki, M., Lauks, S., Jarius, S., Wildemann, B., Havla, J., Kümpfel, T., Schrot, M. C., Ringelstein, M., Kraemer, M., … Schwab, N. (2025). Broader anti-EBV TCR repertoire in multiple sclerosis: disease specificity and treatment modulation. Brain : a journal of neurology, 148(3), 933–940. https://doi.org/10.1093/brain/awae244
Vietzen, H., Berger, S. M., Kühner, L. M., Furlano, P. L., Bsteh, G., Berger, T., Rommer, P., & Puchhammer-Stöckl, E. (2023). Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell, 186(26), 5705–5718.e13. https://doi.org/10.1016/j.cell.2023.11.015
Aloisi, F., Giovannoni, G., & Salvetti, M. (2023). Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. The Lancet. Neurology, 22(4), 338–349. https://doi.org/10.1016/S1474-4422(22)00471-9
Soldan, S. S., Su, C., Monaco, M. C., Yoon, L., Kannan, T., Zankharia, U., Patel, R. J., Dheekollu, J., Vladimirova, O., Dowling, J. W., Thebault, S., Brown, N., Clauze, A., Andrada, F., Feder, A., Planet, P. J., Kossenkov, A., Schäffer, D. E., Ohayon, J., Auslander, N., … Lieberman, P. M. (2024). Multiple sclerosis patient-derived spontaneous B cells have distinct EBV and host gene expression profiles in active disease. Nature microbiology, 9(6), 1540–1554. https://doi.org/10.1038/s41564-024-01699-6
Giovannoni, G., Vanderdonckt, P., Hartung, H. P., Lassmann, H., & Comi, G. (2022). EBV and multiple sclerosis: Setting the research agenda. Multiple sclerosis and related disorders, 67, 104158. https://doi.org/10.1016/j.msard.2022.104158
Ascherio, A., & Munger, K. L. (2016). Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention-An Update. Seminars in neurology, 36(2), 103–114. https://doi.org/10.1055/s-0036-1579693
'tHart, B. A., Kap, Y. S., Morandi, E., Laman, J. D., & Gran, B. (2016). EBV Infection and Multiple Sclerosis: Lessons from a Marmoset Model. Trends in molecular medicine, 22(12), 1012–1024. https://doi.org/10.1016/j.molmed.2016.10.007
Hassani, A., & Khan, G. (2022). What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis?. Frontiers in immunology, 13, 1036155. https://doi.org/10.3389/fimmu.2022.1036155
Rang, X., Liu, Y., Wang, J., Wang, Y., Xu, C., & Fu, J. (2022). Identification of multiple sclerosis-related genes regulated by EBV-encoded microRNAs in B cells. Multiple sclerosis and related disorders, 59, 103563. https://doi.org/10.1016/j.msard.2022.103563
O'Leary K. (2022). Mounting evidence for EBV links to multiple sclerosis. Nature medicine, 28(12), 2450. https://doi.org/10.1038/s41591-022-02151-0
Rostgaard, K., & Hjalgrim, H. (2023). Multiple sclerosis and age at primary EBV infection. Infectious diseases now, 53(6), 104723. https://doi.org/10.1016/j.idnow.2023.104723
Wood H. (2024). EBV-specific T cells in multiple sclerosis. Nature reviews. Neurology, 20(5), 255. https://doi.org/10.1038/s41582-024-00959-7
Alanazi A. (2022). Epstein-Barr Virus (EBV) and Multiple Sclerosis Disease: A Biomedical Diagnosis. Computational intelligence and neuroscience, 2022, 3762892. https://doi.org/10.1155/2022/3762892
Levine, K. S., Leonard, H. L., Blauwendraat, C., Iwaki, H., Johnson, N., Bandres-Ciga, S., Ferrucci, L., Faghri, F., Singleton, A. B., & Nalls, M. A. (2023). Virus exposure and neurodegenerative disease risk across national biobanks. Neuron, 111(7), 1086–1093.e2. https://doi.org/10.1016/j.neuron.2022.12.029
Ballerini, C., Amoriello, R., Maghrebi, O., Bellucci, G., Addazio, I., Betti, M., Aprea, M. G., Masciulli, C., Caporali, A., Penati, V., Ballerini, C., De Meo, E., Portaccio, E., Salvetti, M., & Amato, M. P. (2025). Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Frontiers in immunology, 16, 1557483. https://doi.org/10.3389/fimmu.2025.1557483
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michał Czechowski, Gabriela Sikora, Martyna Woźniak, Karolina Kutnik, Karolina Koguc, Karolina Kusibab, Gabriela Skórska, Marcela Słomianny, Karolina Kolada, Małgorzata Sajda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 297
Number of citations: 0