Precision Negative Inotropy: The Rise of Cardiac Myosin Inhibitors in HCM
DOI:
https://doi.org/10.12775/JEHS.2025.84.65626Keywords
hypertrophic cardiomyopathy, cardiac myosin inhibitor, aficamten, mavacamten, obstructive HCM, nonobstructive HCM, LVOT obstruction, peak VO₂, KCCQAbstract
Background: Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, marked by left-ventricular hypertrophy, dynamic outflow obstruction in many patients, diastolic dysfunction, and elevated risks of atrial fibrillation and heart failure. Conventional drugs improve symptoms but do not directly address sarcomeric hypercontractility. Cardiac myosin inhibitors (CMIs) attenuate excessive cross-bridge cycling via stabilization of autoinhibited/super-relaxed myosin states.
Objective: To compare aficamten and mavacamten across mechanism, pharmacology, efficacy, safety, drug-drug interactions, and monitoring, highlighting MAPLE-HCM (aficamten vs metoprolol in obstructive HCM) and ODYSSEY-HCM (mavacamten vs placebo in nonobstructive HCM).
Results: In obstructive HCM, CMIs improve gradients and functional capacity in randomized trials; MAPLE-HCM showed aficamten superiority over metoprolol for peak VO₂ and multiple secondary endpoints at 24 weeks. In nonobstructive HCM, ODYSSEY-HCM was neutral on its dual primary endpoints (peak VO₂, KCCQ-CSS) at 48 weeks, with more LVEF < 50% on mavacamten that typically resolved with interruption. Pharmacology and operations differ: aficamten’s shorter half-life and linear PK may enable tighter titration, whereas mavacamten requires REMS-guided monitoring and careful DDI management.
Conclusions: For symptomatic obstructive HCM, CMIs represent mechanism-directed therapy; aficamten and mavacamten both have robust placebo-controlled evidence, and MAPLE-HCM positions aficamten as a plausible first-line option in appropriate patients. In nonobstructive HCM, routine CMI use is not supported by current randomized evidence. Long-term remodeling, arrhythmia outcomes, and phenotype-guided selection remain priorities.
References
1. Ommen SR, Ho CY, Asif IM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy. Circulation. 2024;149:e1239–e1311. doi:10.1161/CIR.0000000000001250
2. Arbelo E, Protonotarios A, Gimeno JR, et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023;44:3503–3526. doi:10.1093/eurheartj/ehad194
3. Maron BJ, Rowin EJ, Maron MS. Diagnosis and evaluation of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2022;79:372–389. doi:10.1016/j.jacc.2021.12.002
4. Day SM, Martin JL, Ababou A, et al. Myosin modulators—mechanisms & trials. J Clin Invest. 2022;132:e148557. doi:10.1172/JCI148557
5. Olivotto I, Oreziak A, Barriales-Villa R, et al. EXPLORER-HCM. Lancet. 2020;396:759–769. doi:10.1016/S0140-6736(20)31792-X
6. Desai MY, Owens A, Geske JB, et al. VALOR-HCM primary results. J Am Coll Cardiol. 2022;80:95–108. doi:10.1016/j.jacc.2022.04.048
7. Desai MY, Owens A, Wolski K, et al. VALOR-HCM week-56. JAMA Cardiol. 2023;8:968–977. doi:10.1001/jamacardio.2023.3342
8. Desai MY, Nissen SE, et al. VALOR-HCM week-128 (end-of-treatment). Circulation. 2025;151:—. doi:10.1161/CIRCULATIONAHA.124.072445
9. Maron MS, Masri A, Saberi S, et al. SEQUOIA-HCM (aficamten vs placebo). N Engl J Med. 2024;390:1849–1861. doi:10.1056/NEJMoa2401424
10. Maron MS, Lee MMY, Masri A, et al. Impact of aficamten on disease & symptom burden (SEQUOIA analyses). J Am Coll Cardiol. 2024;84:—. doi:10.1016/j.jacc.2024.09.003
11. Coats CJ, Lee MMY, Saberi S, et al. Dosing & safety profile of aficamten (SEQUOIA-HCM). J Am Heart Assoc. 2024;13:e035993. doi:10.1161/JAHA.124.035993
12. Malik FI, Carrick-Ranson G, Vandenboom R, et al. Phase 1 aficamten in healthy adults. JACC Basic Transl Sci. 2022;7:763–775. doi:10.1016/j.jacbts.2022.04.008
13. Xu D, Wang L, Kubota T, et al. Aficamten ADME/mass balance. Pharmacol Res Perspect. 2024;12:e70006. doi:10.1002/prp2.70006
14. Xu D, Wang L, Malik FI, et al. Population PK of aficamten. CPT Pharmacometrics Syst Pharmacol. 2025;—. doi:10.1002/psp4.70099
15. Desai MY, Owens A, Geske JB, et al. ODYSSEY-HCM (mavacamten in nHCM). N Engl J Med. 2025;—. doi:10.1056/NEJMoa2505927
16. Desai MY, Geske JB, et al. ODYSSEY biomarkers. J Am Coll Cardiol. 2025;—. doi:10.1016/j.jacc.2025.08.017
17. Desai MY, Geske JB, et al. ODYSSEY echocardiography. J Am Coll Cardiol. 2025;—. doi:10.1016/j.jacc.2025.08.019
18. García-Pavía P, Masri A, Maron MS, et al. MAPLE-HCM (aficamten vs metoprolol). N Engl J Med. 2025;—. doi:10.1056/NEJMoa2504654
19. García-Pavía P, Saberi S, et al. MAPLE-HCM rationale/design. JACC Heart Fail. 2025;13:346–357. doi:10.1016/j.jchf.2024.11.011
20. Owens AT, Day SM, Masri A, et al. Mavacamten for obstructive HCM: narrative review. J Am Heart Assoc. 2024;13:e033767. doi:10.1161/JAHA.124.033767
21. Hartman JJ, Malik FI, et al. Aficamten—mechanistic review. Nat Rev Cardiol. 2024;21:—. doi:10.1038/s44161-024-00505-0
22. Ho CY, Olivotto I, Jacoby D, et al. MAVERICK-HCM (phase 2 non-obstructive). J Am Coll Cardiol. 2020;75:2649–2660. doi:10.1016/j.jacc.2020.03.064
23. Saberi S, Masri A, et al. FOREST-HCM open-label extension (aficamten), 48-week results. JACC Heart Fail. 2025;—. doi:10.1016/j.jchf.2025.03.040
24. Chuang C, Yang J, Pineda-Salgado L, et al. Discovery of aficamten (CK-274). J Med Chem. 2021;64:14142–14158. doi:10.1021/acs.jmedchem.1c01290
25. McGurk KA, Sood A, et al. Pharmacogenetic influences over mavacamten. Circulation. 2024;149:—. doi:10.1161/CIRCULATIONAHA.123.066916
26. García-Pavía P, Oręziak A, Masri A, et al. Long-term effect of mavacamten in oHCM (EXPLORER cohort, MAVA-LTE). Eur Heart J. 2024;45:5071–5083. doi:10.1093/eurheartj/ehae579
27. Marian AJ. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121:749–770. doi:10.1161/CIRCRESAHA.117.311059
28. Ommen SR, Ho CY, Asif IM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of HCM. Circulation. 2024;149:e1239–e1311. doi:10.1161/CIR.0000000000001250
29. Mazzarotto F, Girolami F, Boschi B, et al. Contemporary insights into the genetics of HCM. J Am Heart Assoc. 2020;9:e015473. doi:10.1161/JAHA.119.015473
30. Teekakirikul P, Kelly MA, Rehm HL, Lakdawala NK. Hypertrophic cardiomyopathy: an overview of genetics and management. Biomolecules. 2019;9:878. doi:10.3390/biom9120878
31. Walsh R, Thomson KL, Ware JS, et al. Defining the genetic architecture of HCM: re-evaluating non-sarcomeric genes. Eur Heart J. 2017;38:3469–3477. doi:10.1093/eurheartj/ehx603
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Skibicka, Tomasz Skibicki, Weronika Wesołowska, Robert Bujak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 168
Number of citations: 0