Contemporary, mechanism-anchored biomarkers of endothelial dysfunction and oxidative stress (established and emerging)
DOI:
https://doi.org/10.12775/JEHS.2025.85.65618Keywords
Endothelial dysfunction, oxidative stress, biomarkers, nitric oxide, ADMA, oxidation-specific epitopes, oxidised LDL, LOX-1, NOX, xanthine oxidase, oxysterolsAbstract
Background: Endothelial dysfunction and oxidative stress act together across hypertension, atherosclerosis, coronary disease and heart failure. Loss of nitric oxide (NO) signalling and excess reactive oxygen species (ROS) fuel inflammation, thrombosis and adverse remodelling
Objective: To provide a contemporary, mechanism-anchored review of established and emerging biomarkers of endothelial dysfunction and oxidative stress, explain what each marker indicates and how it is measured and outline how small multimarker panels can support risk assessment, therapy monitoring and clinical decisions.
Results: Across studies, ADMA, NO/eNOS coupling or FMD, OSE, and hs-CRP/adhesion molecules consistently indicate endothelial activation or impaired vasoprotection. On the oxidative axis, NOX activity, xanthine oxidase/uric acid, ox-LDL/LOX-1, and oxysterols signal lipid oxidation and redox stress within plaques. In practice, compact panels that combine one endothelial, one oxidative and one inflammation marker appear more informative than single tests and may help show target engagement during treatment (e.g., ox-LDL/LOX-1 fall with intensive LDL lowering; urate falls with XO inhibition; FMD and some oxidative footprints improve with lifestyle optimisation).
Conclusions: Biomarkers spanning endothelial function and oxidative injury provide actionable signals for earlier risk identification and therapy monitoring. Using small, feasible panels and standardised measurement can make these tools clinically practical, while future trials should link biomarker change to outcomes.
References
1. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-837, 837a-837d. doi:10.1093/eurheartj/ehr304
2. Jensen HA, Mehta JL. Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 2016;14(9):1021-1033. doi:10.1080/14779072.2016.1207527
3. Böger RH. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Clin Res Cardiol. 2023;112(5):614-626. doi:10.1007/s00392-022-02107-8
4. Schächinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899-1906. doi:10.1161/01.CIR.101.16.1899
5. Vasan RS, Ridker PM. Inflammatory biomarkers and cardiovascular disease risk: CRP and beyond. Nat Rev Cardiol. 2022;19(6):383-397. doi:10.1038/s41569-021-00664-7
6. Miller YI, Choi SH, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern-recognition receptors of innate immunity. Circ Res. 2011;108(2):235-248. doi:10.1161/CIRCRESAHA.110.223875
7. Tsimikas S, Willeit P, Knoflach M, et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular event rates, and the effect of pravastatin. J Am Coll Cardiol. 2012;60(21):2219-2229. doi:10.1016/j.jacc.2012.08.979
8. Pirillo A, Norata GD, Catapano AL. LOX-1, oxLDL, and atherosclerosis. Mediators Inflamm. 2013; 2013:152786. doi:10.1155/2013/152786
9. Teixeira PC, Lopes RA. NADPH oxidases as therapeutic targets in cardiovascular diseases. Antioxidants. 2024;13(1):112. doi:10.3390/antiox13010112
10. Madamanchi NR, Runge MS. Oxidative stress, NADPH oxidase, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(1):29-38. doi:10.1161/01.ATV.0000150649.39934.13
11. Griendling KK, Sorescu D, Ushio-Fukai M. NADPH oxidase and vascular disease. Circ Res. 2000;86(5):494-501. doi:10.1161/01.RES.86.5.494
12. Kuwabara M. Hyperuricemia, cardiovascular disease, and hypertension. Pulse (Basel). 2016;3(3-4):242-252. doi:10.1159/000443769
13. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with primary hypertension and hyperuricemia. Hypertension. 2008;52(5):101-106. doi:10.1161/HYPERTENSIONAHA.108.116756
14. Luquain-Costaz C, Delton I. Oxysterols in vascular cells and role in atherosclerosis. Adv Exp Med Biol. 2024;1440:213-229. doi:10.1007/978-3-031-43883-7_11
15. Steinberg D. Low-density lipoprotein oxidation and pathogenesis of atherosclerosis. Circulation. 1997;95(4):1062-1071. doi:10.1161/01.CIR.95.4.1062
16. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104(22):2673-2678. doi:10.1161/hc4601.099485
17. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349(17):1595-1604. doi:10.1056/NEJMoa035003
18. Di Minno A, Turnu L, Porro B, et al. 8-Hydroxy-2′-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis. Antioxid Redox Signal. 2016;24(10):548-555. doi:10.1089/ars.2015.6508
19. Jayaraj RL, Azimullah S, Beiram R, Ojha SK. Nitrotyrosine and cardiovascular dysfunction: mechanisms and biomarkers. Life Sci. 2022;305:120789. doi:10.1016/j.lfs.2022.120789
20. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102-1111. doi:10.1161/01.ATV.0000163262.83456.6d
21. Libby P. Inflammation in atherosclerosis: mechanisms and clinical translation. J Am Coll Cardiol. 2021;78(25):2499-2514. doi:10.1016/j.jacc.2021.10.006
22. Cooke JP, Ghebremariam YT. DDAH says NO to ADMA: progress in understanding the ADMA/DDAH pathway. Arterioscler Thromb Vasc Biol. 2011;31(7):1462-1470. doi:10.1161/ATVBAHA.111.226852
23. Valaitienė J, Laučytė-Cibulskienė A. F2-isoprostanes as credible in-vivo markers of oxidative stress with cardiovascular relevance. Artery Res. 2024;35:100624. doi:10.1016/j.artres.2024.100624
24. Geraci G, Vassallo V, Tartaglia A, et al. Relationship between 8-iso-prostaglandin-F2α and predicted 10-year cardiovascular risk in hypertensive patients. Life (Basel). 2025;15(3):401. doi:10.3390/life15030401
25. Bagyura Z, Kiss L, Édes IF, et al. Level of advanced oxidation protein products is associated with subclinical atherosclerosis. BMC Cardiovasc Disord. 2022;22(1):5. doi:10.1186/s12872-021-02451-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Skibicka, Weronika Wesołowska, Albert Jaśniak, Robert Bujak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 259
Number of citations: 0