Pathophysiological Significance of Urea in Glomerular Filtration Dysregulation in Hepatorenal Syndrome: An Integrative Review
DOI:
https://doi.org/10.12775/JEHS.2025.84.64982Keywords
hepatorenal syndrome, urea, glomerular filtration, pathophysiology, uremic toxins, protein carbamylation.Abstract
Objective: To conduct an integrative review of the pathophysiological significance of urea in glomerular filtration dysregulation in hepatorenal syndrome (HRS), synthesizing heterogeneous evidence from experimental, clinical, and translational studies using the five-stage Whittemore & Knafl methodology. Methods: A systematic literature search was performed in PubMed/MEDLINE, Embase, Cochrane Library, Web of Science, Scopus, and Ukrainian scientific databases covering 1900–2024. Search terms combined “hepatorenal syndrome,” “urea,” “uremic toxins,” “glomerular filtration,” and “pathophysiology.” Two independent reviewers selected studies and assessed quality using CASP and JBI criteria. Results: A total of 227 relevant studies were analyzed, including 89 experimental, 76 clinical, 34 reviews, and 18 meta-analyses. Five main thematic categories emerged: mechanisms of urea accumulation (notably GFR reduction to 10–20% of normal in HRS), toxic effects via protein carbamylation (correlation r=0.947, p<0.001), oxidative stress and inflammatory reactions, formation of pathophysiological vicious cycles, and therapeutic strategies. Contributions from the Ukrainian scientific school notably advanced the understanding of HRS as a systemic disease with urea as a central pathophysiological mediator. Conclusions: Urea plays a central role in HRS pathophysiology as an active mediator, not merely a passive marker of renal dysfunction. Elevated urea levels above 35 mmol/L associate with a 3.42-fold increased mortality risk, while reductions exceeding 30% correlate with improved clinical outcomes, emphasizing the need for randomized trials targeting urea correction in HRS. Professor A.I. Gozhenko’s Hypothesis on Urea Regulation Professor Gozhenko fundamentally revises the traditional view of urea, proposing it as an active regulatory metabolite with critical homeostatic functions rather than a mere metabolic waste product. Blood urea concentrations (5–8 mmol/L) are comparable to glucose levels and far exceed creatinine concentrations, indicating its physiological importance. The strict homeostatic regulation of urea levels supports its role in maintaining water-electrolyte balance and renal blood flow. Urea exerts concentration-dependent effects: beneficial at physiological ranges and potentially harmful when elevated. This insight highlights renal self-regulation mechanisms that act preventively to maintain organismal homeostasis before systemic signals intervene. Given the enormous daily glomerular filtration volume (~175 liters), even minor tubular reabsorption disturbances could cause significant fluid loss, underscoring the critical importance of these autoregulatory processes. Although homeostasis and urea are integral elements of the comprehensive regulation of water-salt metabolism, their dysregulation can cause significant clinical problems. Notably, previous reviews on sodium regulation also form parts of this broader issue of water-electrolyte balance regulation, emphasizing the complexity and interdependence of mechanisms sustaining homeostasis. Clinically, this paradigm shift suggests interpreting urea levels as active regulatory biomarkers, opening new avenues for personalized therapies targeting optimal urea homeostasis, preventive interventions, and novel treatments for kidney and liver diseases. Future research should focus on elucidating molecular mechanisms of urea’s regulatory functions, defining optimal concentration ranges in pathology, and developing targeted therapeutic strategies based on these concepts.References
Adebayo, D., & Wong, F. (2023). Pathophysiology of hepatorenal syndrome - acute kidney injury. Clinical Gastroenterology and Hepatology, 21(10), 2472–2485. https://doi.org/10.1016/j.cgh.2023.04.034
Adeyomoye, O. I., Akintayo, C., Omotuyi, K., & Adewumi, A. (2022). The biological roles of urea: A review of preclinical studies. Indian Journal of Nephrology, 32(6), 539–545. https://doi.org/10.4103/ijn.ijn_88_21
André, C., Bodeau, S., Kamel, S., Bennis, Y., & Caillard, P. (2023). The AKI-to-CKD transition: The role of uremic toxins. International Journal of Molecular Sciences, 24(22), Article 16152. https://doi.org/10.3390/ijms242216152
Bankir, L., Crambert, G., & Vargas-Poussou, R. (2024). The SLC6A18 transporter is most likely a Na-dependent glycine/urea antiporter responsible for urea secretion in the proximal straight tubule. Influence of this urea secretion on GFR. Nephron Clinical Practice. https://doi.org/10.1159/000539602
Barreto, F. C., Stinghen, A. E., Oliveira, R. B. D., Franco, A. T. B., Moreno, A. N., Barreto, D. V., Pecoits-Filho, R., Drüeke, T. B., & Massy, Z. A. (2014). The quest for a better understanding of chronic kidney disease complications: An update on uremic toxins. Jornal Brasileiro de Nefrologia, 36(2), 221–235. https://doi.org/10.5935/0101-2800.20140033
Basile, C., Libutti, P., Teutonico, A., & Lomonte, C. (2010). Uremic toxins: The case of protein-bound compounds. Giornale Italiano di Nefrologia, 27(5), 498–507. https://pubmed.ncbi.nlm.nih.gov/20922681
Bernstein, A. M., Treyzon, L., & Li, Z. (2007). Are high-protein, vegetable-based diets safe for kidney function? A review of the literature. Journal of the American Dietetic Association, 107(4), 644–650. https://doi.org/10.1016/j.jada.2007.01.002
Bombushkar, I. S., & Gozhenko, A. I. (2024). Особливості обміну азотистих метаболітів та електролітів за різних варіантів обміну сечової кислоти у щурів [Cechy metabolizmu metabolitów azotowych i elektrolitów przy różnych wariantach metabolizmu kwasu moczowego u szczurów]. Actual Problems of Transport Medicine, 4(74), 130–137.
Chávez-Iñiguez, J. S., Maggiani-Aguilera, P., González-Barajas, D., Rizo-Topete, L., Galindo, P. E., Rifkin, B. S., Chávez-Alonso, G., Pérez-Hernández, S. C., Hernández-Morales, K., Pérez-Venegas, M., Murguia-Soto, C., Navarro-Blackaller, G., Medina-González, R., Alcantar-Vallín, M. D. L. L., Renoirte-Lopez, K., & Garcia-Garcia, G. (2023). Urea reduction in acute kidney injury and mortality risk. Kidney & Blood Pressure Research, 48(1), 357–366. https://doi.org/10.1159/000530237
Chiuariu, T., Salaru, D., Ureche, C., Vasiliu, L., Lupu, A., Lupu, V. V., Șerban, A. M., Zăvoi, A., Benchea, L., Clement, A., Tudurachi, B., Sascau, R., & Stanescu, C. (2024). Cardiac and renal fibrosis, the silent killer in the cardiovascular continuum: An up-to-date. Journal of Cardiovascular Development and Disease. https://doi.org/10.3390/jcdd11020062
Chmielewski, J., Lewandowski, R. J., & Maddur, H. (2018). Hepatorenal syndrome: Physiology, diagnosis and management. Seminars in Interventional Radiology, 35(3), 194–197. https://doi.org/10.1055/s-0038-1660797
Cohen, G. M., Glorieux, G., Thornalley, P. J., Schepers, E., Meert, N., Jankowski, J., Jankowski, V., Argilés, À., Anderstam, B., Brunet, P., Cerini, C., Dou, L., Deppisch, R., Marescau, B., Massy, Z. A., Perna, A. F., Raupachova, J., Rodriguez, M., Stegmayr, B.,... Hörl, W. H. (2007). Review on uraemic toxins III: Recommendations for handling uraemic retention solutes in vitro—towards a standardized approach for research on uraemia. Nephrology Dialysis Transplantation, 22(12), 3381–3390. https://doi.org/10.1093/ndt/gfm210
Colombo, G., Altomare, A., Astori, E., Landoni, L., Garavaglia, M. L., Rossi, R., Giustarini, D., Lionetti, M. C., Gagliano, N., Milzani, A., & Dalle-Donne, I. (2022). Effects of physiological and pathological urea concentrations on human microvascular endothelial cells. International Journal of Molecular Sciences, 24(1), Article 691. https://doi.org/10.3390/ijms24010691
D'Apolito, M., Colia, A. L., Manca, E., Pettoello-Mantovani, M., Sacco, M., Maffione, A. B., Brownlee, M., & Giardino, I. (2018). Urea memory: Transient cell exposure to urea causes persistent mitochondrial ROS production and endothelial dysfunction. Toxins, 10(10), Article 410. https://doi.org/10.3390/toxins10100410
D'Apolito, M., Du, X., Zong, H., Catucci, A., Maiuri, L., Trivisano, T., Pettoello-Mantovani, M., Campanozzi, A., Raia, V., Pessin, J. E., Brownlee, M., & Giardino, I. (2010). Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. Journal of Clinical Investigation, 120(1), 203–213. https://doi.org/10.1172/JCI37672
Wu, L., Liu, Y., Liu, Z. et al. Serum urea acid and urea nitrogen levels are risk factors for maternal and fetal outcomes of pregnancy: a retrospective cohort study. Reprod Health 19, 192 (2022). https://doi.org/10.1186/s12978-022-01496-6
Fenton, R. A. (2009). Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflügers Archiv: European Journal of Physiology, 458(1), 169–177. https://doi.org/10.1007/s00424-008-0612-4
Fenton, R. A., & Knepper, M. A. (2007). Urea and renal function in the 21st century: Insights from knockout mice. Journal of the American Society of Nephrology, 18(3), 679–688. https://doi.org/10.1681/ASN.2006101108
Gadour, M. O. E. (2006). Hepatorenal syndrome: A review. Sudan Journal of Medical Sciences, 1(1), 59–61. https://doi.org/10.4314/sjms.v1i1.38443
Giardino, I., D'Apolito, M., Brownlee, M., Maffione, A. B., Colia, A. L., Sacco, M., Ferrara, P., & Pettoello-Mantovani, M. (2018). Vascular toxicity of urea, a new "old player" in the pathogenesis of chronic renal failure induced cardiovascular diseases. Turkish Archives of Pediatrics, 52(4), 187–193. https://doi.org/10.5152/TurkPediatriArs.2017.6314
Giovanni, A. D. (2023). Uremic toxins: The role of the gut and the kidneys. IntechOpen. https://doi.org/10.5772/intechopen.109845
Gozhenko, A. I., & Fedoruk, O. S. (2023). Період вторинної олігурії в перебігу гострої ниркової недостатності [Okres wtórnej oligurii w przebiegu ostrej niewydolności nerek]. Actual Problems of Transport Medicine, 1-2(71-72), 89–93.
Gozhenko, A. I. (1987). Energy supply of the main renal functions and processes in norm and with kidney damage. Abstract of the doctoral dissertation. Kyiv. (in Russian).
Güngör, G., Akyildiz, M., Keskin, M., Solak, Y., Gaipov, A., Biyik, M., Çifçi, S., Ataseven, H., Polat, H., & Demir, A. (2016). Is there any potential or additive effect of anemia on hepatorenal syndrome. Turkish Journal of Gastroenterology, 27(3), 273–278. https://doi.org/10.5152/tjg.2016.16029
Harlacher, E., Wollenhaupt, J., Baaten, C. C., & Noels, H. (2022). Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: A systematic review. International Journal of Molecular Sciences, 23(1), Article 531. https://doi.org/10.3390/ijms23010531
Holmar, J., Puente-Secades, S. D. L., Floege, J., Noels, H., Jankowski, J., & Orth-Alampour, S. (2020). Uremic toxins affecting cardiovascular calcification: A systematic review. Cells, 9(11), Article 2428. https://doi.org/10.3390/cells9112428
Ito, S., & Yoshida, M. (2014). Protein-bound uremic toxins: New culprits of cardiovascular events in chronic kidney disease patients. Toxins, 6(2), 665–678. https://doi.org/10.3390/toxins6020665
Ivanov, D. D., Gozhenko, A. I., & Ivanova, M. D. (2025). Хронічна хвороба нирок починається із гострого ураження нирок [Przewlekła choroba nerek zaczyna się od ostrego uszkodzenia nerek]. Kidneys, 14(1), 2–6. https://doi.org/10.22141/2307-1257.14.1.2025.502
Jansen, J., Jankowski, J., Gajjala, P. R., Wetzels, J. F., & Masereeuw, R. (2017). Disposition and clinical implications of protein-bound uremic toxins. Clinical Science, 131(14), 1631–1647. https://doi.org/10.1042/CS20160191
Jung, C., & Chang, J. W. (2023). Hepatorenal syndrome: Current concepts and future perspectives. Clinical and Molecular Hepatology, 29(4), 891–907. https://doi.org/10.3350/cmh.2023.0024
Kim, D. (2006). Long-term regulation of renal urea transporters during antidiuresis. Electrolyte & Blood Pressure, 4(1), 18–22. https://doi.org/10.5049/EBP.2006.4.1.18
Klein, J. D. (2014). Expression of urea transporters and their regulation. Sub-Cellular Biochemistry, 73, 79–107. https://doi.org/10.1007/978-94-017-9343-8_6
Klein, J. D., Blount, M. A., & Sands, J. M. (2011). Urea transport in the kidney. Comprehensive Physiology, 1(2), 699–729. https://doi.org/10.1002/cphy.c100030
Ko, G. J., Obi, Y., Tortorici, A. R., & Kalantar-Zadeh, K. (2017). Dietary protein intake and chronic kidney disease. Current Opinion in Clinical Nutrition and Metabolic Care, 20(1), 77–85. https://doi.org/10.1097/MCO.0000000000000342
Koppe, L., Nyam, E., Vivot, K., Fox, J. E. M., Dai, X., Nguyen, B. N., Trudel, D., Attané, C., Moullé, V. S., MacDonald, P. E., Ghislain, J., & Poitout, V. (2016). Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease. Journal of Clinical Investigation, 126(9), 3598–3612. https://doi.org/10.1172/JCI86181
Kuchma, I. (2021). Uremic toxins. Back to the future. https://doi.org/10.22141/2307-1257.10.2.2021.234323
Kuma, A., Wang, X. H., Klein, J. D., Tan, L., Naqvi, N., Rianto, F., Huang, Y., Yu, M., & Sands, J. M. (2020). Inhibition of urea transporter ameliorates uremic cardiomyopathy in chronic kidney disease. The FASEB Journal, 34(6), 8296–8309. https://doi.org/10.1096/fj.202000214RR
Kvasnytska, O., & Gozhenko, A. (2023). Renal dysfunction in patients with chronic toxic hepatitis and ways of its correction. Journal of Education, Health and Sport, 13(5), 183–189. https://doi.org/10.12775/JEHS.2023.13.05.023
Kvasnytska, O., Gozhenko, A., & Zukow, W. (2024). Condition of Renal Excretory Function in Patients with Chronic Liver Diseases. Journal of Education, Health and Sport, 60, 518–529. https://doi.org/10.12775/jehs.2024.60.51879
Kvasnytska, O., Gozhenko, A., (2023). Гепаторенальний синдром: історія вивчення, особливості етіології та патогенезу [Zespół wątrobowo-nerkowy: historia badań, cechy etiologii i patogenezy]. Вісник морської медицини, 2(99), 189–195.
Kvasnytska, O., Gozhenko, A., & Zukow, W. (2024). Сечовина: сучасні уявлення про обмін та фізіологічну роль в організмі людини [Mocznik: współczesne poglądy na metabolizm i rolę fizjologiczną w organizmie człowieka]. Actual Problems of Transport Medicine, 2(76), 35–44. http://repozytorium.umk.pl/handle/item/7019
Kvasnytska, O., Gozhenko, A., Ivanov, D., & Popadynets, O. (2025). The role of urea in pathological conditions. KIDNEYS, 14(3). https://doi.org/10.22141/2307-1257.14.3.2025.529
Lau, W. L., & Vaziri, N. D. (2016). Urea, a true uremic toxin: The empire strikes back. Clinical Science, 131(1), 3–12. https://doi.org/10.1042/CS20160203
Lau, W. L., Savoj, J., Nakata, M. B., & Vaziri, N. D. (2018). Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clinical Science, 132(5), 509–522. https://doi.org/10.1042/CS20171107
Lauriola, M. M., Farré, R., Evenepoel, P., Overbeek, S. A., & Meijers, B. (2023). Food-derived uremic toxins in chronic kidney disease. Toxins, 15(2), Article 116. https://doi.org/10.3390/toxins15020116
Laville, S. M., Couturier, A., Lambert, O., Metzger, M., Mansencal, N., Jacquelinet, C., Laville, M., Frimat, L., Fouque, D., Combe, C., Robinson, B. G., Stengel, B., Liabeuf, S., & Massy, Z. A. (2022). Urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 38(1), 184–192. https://doi.org/10.1093/ndt/gfac045
Laville, S. M., Couturier, A., Lambert, O., Metzger, M., Nicolas, M., Jacquelinet, C., Laville, M., Frimat, L., Fouque, D., Combe, C., Robinson, B. G., Stengel, B., Liabeuf, S., & Massy, Z. A. (2022). MO496: Serum urea levels and cardiovascular disease in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 37(Suppl_3), gfac067.002. https://doi.org/10.1093/ndt/gfac071.027
Möller, S., Henriksen, J. H., & Bendtsen, F. (2005). Pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Scandinavian Journal of Gastroenterology, 40(10), 1123–1139. https://doi.org/10.1080/00365520510023909
Nigam, S. K., & Bush, K. T. (2019). Uraemic syndrome of chronic kidney disease: Altered remote sensing and signalling. Nature Reviews Nephrology, 15(5), 301–316. https://doi.org/10.1038/s41581-019-0111-1
Simonetto, D. A., Gines, P., Kamath, P. S. Hepatorenal syndrome: pathophysiology, diagnosis, and management. BMJ. 2020 Sep 14;370:m2687. https://doi.org/10.1136/bmj.m2687 PMID: 32928750.
Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P., Clark, W., Cohen, G., De Deyn, P. P., Deppisch, R., Descamps-Latscha, B., Henle, T., Jörres, A., Lemke, H. D., Massy, Z. A., Passlick-Deetjen, J., Rodriguez, M., Stegmayr, B., Stenvinkel, P.,... European Uremic Toxin Work Group (EUTox). (2007). Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney International, 63(5), 1934–1943. https://doi.org/10.1046/j.1523-1755.2003.00924.x
Vanholder, R., Pletinck, A., Schepers, E., & Glorieux, G. (2018). Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins, 10(1), Article 33. https://doi.org/10.3390/toxins10010033
Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anatoliy Gozhenko, Walery Zukow, Olena Gozhenko, Olga Kvasnytska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 490
Number of citations: 0