Hemodynamic and tomographic comparisons in patients with migraine
DOI:
https://doi.org/10.12775/JEHS.2025.79.64013Keywords
transcranial duplex scanning, magnetic resonance imaging, cerebral hemodynamics, migraineAbstract
A comprehensive clinical and instrumental examination of 104 patients with migraine aged 18 to 44 years was performed using transcranial duplex scanning and magnetic resonance imaging in the groups of patients with migraine without aura (59 patients) and with migraine with aura (45 patients). In migraine with aura, according to magnetic resonance imaging, the presence of hyperintense on T2VI and predominantly isointense on T1VI foci with a diameter of 3 to 12 mm was noted in 53.3% of patients, in the group of migraine without aura, these changes were observed in 28.8% of cases. The predominant localization of the foci was the white matter of the temporal areas of the brain (41.6% of patients with migraine with aura and 35.2% of patients with migraine without aura). Cerebral hemodynamics in the middle cerebral arteries during migraine attacks is characterized by a vasospasm pattern in migraine without aura and a pattern of impaired perfusion in migraine with aura. These changes are mainly observed in patients with 2-3 or more hyperintense foci according to MRI. Also, patients in both groups had excessive blood filling of the superior ophthalmic veins, basal veins of Rosenthal, and direct sinus. Therefore, authors concluded that data obtained emphasize the fundamental diagnostic importance of brain damage comparative evaluation in patients with migraine using informative high-resolution methods of transcranial duplex scanning and magnetic resonance imaging.
References
1. Ashina M, Katsarava Z, Do TP, Buse DC, Pozo-Rosich P, Özge A. et al. Migraine: epidemiology and systems of care. Lancet. 2021; 397(10283): 1485-1495. doi: 10.1016/S0140-6736(20)32160-7.
2. Ferrari MD, Goadsby PJ, Burstein R, Kurth T, Ayata C, Charles A. et al. Migraine. Nat Rev Dis Primers. 2022; 8(1): 2. doi:10.1038/s41572-021-00328-4.
3. Kalashnikov VI, Vastyanov RS, Gozhenko OA, Andreeva TO, Stoyanov OM, Chebotareva HМ. et al. Postisometrical relaxation hemodynamic effects in patients with cervicocranialgia and vestibular dysfunction. Acta Balneologica. 2023. 65(5): 330-335.
4. Stoyanov AN, Kalashnikov VI, Vastyanov RS, Pulyk AR, Son AS, Kolesnik OO. State of autonomic regulation and cerebrovascular reactivity in patients with headache with arterial hypertension. Wiadomości Lekarskie. 2022; 75 (9, part 2): 2233-2237.
5. Chawluk JB. Magnetic Resonance Imaging in Migrane. Rev Neurol Dis. 2004; 1(4): 216-218.
6. Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab. 2019; 39(4): 595–609.
7. Erdélyi-Bótor S, Aradi M, Kamson DO, Kovács N, Perlaki G, Orsi G. et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. Headache. 2015; 55(1): 55-70. doi: 10.1111/head.12459.
8. Uggetti C, Squarza S, Longaretti F, Galli A, Di Fiore P, Reganati PF. et al. Migraine with aura and white matter lesions: an MRI study. Neurol Sci. 2017; 38(Suppl 1): 11-13. doi: 10.1007/s10072-017-2897-6.
9. Arkink EB, Palm-Meinders IH, Koppen H, Milles J, van Lew B, Launer LJ. et al. Microstructural white matter changes preceding white matter hyperintensities in migraine. Neurology. 2019; 93(7): 688-694. doi: 10.1212/WNL.0000000000007940.
10. Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. Arch Neurol. 2004; 61(9): 1366-1368.
11. Gudmundsson LS, Scher AI, Sigurdsson S, Geerlings MI, Vidal JS, Eiriksdottir G. et al. Migraine, depression, and brain volume: the AGES-Reykjavik Study. Neurology. 2013; 80(23): 2138-2144. doi: 10.1212/WNL.0b013e318295d69e.
12. Gaist D, Garde E, Blaabjerg M, Nielsen HH, Krøigård T, Østergaard K. et al. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study. Brain. 2016; 139(7): 2015-2023. doi: 10.1093/brain/aww099.
13. Schwedt TJ, Chong CD, Peplinski J, Ross K, Berisha V. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017; 18(1): 87. doi: 10.1186/s10194-017-0796-0.
14. Erdélyi-Bótor S, Aradi M, Kamson DO, Kovács N, Perlaki G, Orsi G. et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. Headache. 2015; 55(1): 55-70. doi: 10.1111/head.12459.
15. Kellner-Weldon F, El-Koussy M, Jung S, Jossen M, Klinger-Gratz PP, Wiest R. Cerebellar hypoperfusion in migraine attack: incidence and significance. Am J Neuroradiol. 2018; 39:435–40. DOI: 10.3174/ajnr.A5508
16. Ornello R, Tiseo C, Pistoia F, Sacco S. Cerebrovascular reactivity in subjects with migraine: Age paradox? J Neurol Sci. 2019; 398: 202-203. doi: 10.1016/j.jns.2019.01.040.
17. Öztürk B, Karadaş Ö. Cerebral Hemodynamic Changes During Migrain Attacks and After Triptan Treatments. Noro Psikiyatr Ars. 2020; 57(3): 192–196. doi: 10.29399/npa.21650
18. Stoyanov AN, Mashchenko SS, Kalashnikov VI, Vastyanov RS, Pulyk AR, Andreeva TO. et al. Vestibular dysfunctions in chronic brain ischemia in the post COVID period. Wiadomości Lekarskie. 2023; 76(3): 591-596.
19. Stoyanov OM, Kalashnikov VY, Vastyanov RS, Mirdzhuraev EM, Son AS, Fedorenko TV. et al Cerebrovascular disorders in patients with COVID-19 consequences pathogenetically determined diagnosis and methods of correction. World of Medicine and Biology. 2024; 2(88): 146-151.
20. Moroz VM, Shandra OA, Vastyanov RS, Yoltukhivsky MV, Omelchenko OD. Physiology. Vinnytsia: Nova Knyha. 2016. 722.
21. Shandra AA, Godlevskii LS, Vastyanov RS, Brusentsov AI, Mikhaleva II, Prudchenko IA, Zaporozhan VN. Effect of intranigral dosage with delta sleep-inducing peptide and its analogs on movement and convulsive activity in rats. Neurosci. Behav. Physiol. 1996; 26(6): 567-571.
22. Shandra AA, Godlevskii LS, Brusentsov AI, Petrashevich VP, Vastyanov RS, Nikel B, Mikhaleva II. Delta-sleep-inducing peptide and its analogs and the serotoninergic system in the development of anticonvulsive influences. Neurosci. Behav. Physiol. 1998; 28(5): 521-526.
23. Stoyanov O, Kalashnikov V, Vastyanov R, Son A, Kolesnik O, Oleinik S. Vegetative Disregulation in the Pathogenesis of Cerebral Angiodystonia and Chronic Brain Ischemia. International Neurological Journal. 2022; 18(3): 19-24. doi:10.22141/2224-0713.18.3.2022.941.
24. Stoyanov OM, Vastyanov RS, Myronov OO, Kalashnikov VI, Babienko VV, Hruzevskiy OA. et al. Vegetative system pathogenetic role in chronic brain ischemia, cerebral hemodynamics disorders and autonomous dysregulation. World of Medicine and Biology. 2022; 2(80): 162-168.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 V. Kalashnikov, R. Vastyanov, O. Stoyanov

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 92
Number of citations: 0