Clinical Relevance of Tumor Markers in Genitourinary Cancer Diagnosis and Treatment - a Literature Review
DOI:
https://doi.org/10.12775/JEHS.2025.83.61788Keywords
PSA, CA IX, VEGF, AFP, LDHAbstract
Introduction and purpose: In recent years, the number of patients diagnosed with genitourinary cancers, including prostate cancer, kidney cancer, bladder cancer, and testicular cancer, has been increasing. Tumor markers—substances pathologically produced in the body during cancer development—ensure rapid diagnosis and subsequent treatment monitoring.
A brief description of the state of knowledge: In the case of prostate cancer, the primary tumor marker is prostate-specific antigen (PSA). It demonstrates high sensitivity but low specificity, and various parameters related to this marker allow accurate diagnosis or help avoid unnecessary biopsies. Markers associated with renal cell carcinoma (such as carbonic anhydrase IX and Ki67) have diagnostic potential but are not routinely used. Traditional testicular cancer markers (alpha-fetoprotein, human chorionic gonadotropin, lactate dehydrogenase) are routinely used to assess disease stage and prognosis. Bladder cancer markers (e.g., bladder tumor antigen, nuclear matrix protein 22) have varying levels of sensitivity and specificity, and unfortunately, none can replace cystoscopy.
Summary: Each of the diseases described has tumor markers of clinical significance; however, none of them is fully reliable, with the most common limitations being low specificity and the possibility of false-positive or false-negative results. Further research on new markers, including genetic and epigenetic ones, is needed to reduce treatment costs and enable more precise diagnosis of these diseases.
References
1. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63-89. https://doi.org/10.14740/wjon1191
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
3. Wasim S, Lee SY, Kim J. Complexities of prostate cancer. Int J Mol Sci. 2022;23(22):14257. https://doi.org/10.3390/ijms232214257
4. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. https://doi.org/10.3390/molecules27175730
5. Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901-1913. https://doi.org/10.1001/jama.2018.3710
6. Moran A, O’Hara C, Khan S, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer. 2011;11(2):235-242. https://doi.org/10.1007/s10689-011-9506-2
7. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899-905. https://doi.org/10.1038/nature08822
8. Park JJ, Kim CK. Paradigm shift in prostate cancer diagnosis: Pre-biopsy prostate magnetic resonance imaging and targeted biopsy. Korean J Radiol. 2022;23(6):625-641. https://doi.org/10.3348/kjr.2022.0059
9. Guo S, Zhou C, Zhang Y, Wang D, Niu T, Zhou F. Diagnostic value of 18F-PSMA-1007 PET/CT combined with prostate specific antigen derived indicators in gray area prostate cancer. Nucl Med Commun. 2023;48(12):1812-1819. https://doi.org/10.1097/MNM.0000000000001690
10. Zou BZ, Wen H, Luo HJ, Luo WC, Xie QT, Zhou MT. Value of serum free prostate-specific antigen density in the diagnosis of prostate cancer. Ir J Med Sci. 2023;192(6):2681-2687. https://doi.org/10.1007/s11845-023-03448-w
11. Yin S, Wang J, Jiang Z, et al. Diagnostic value of PI-RADS v2.1 score combined with prostate-specific antigen-derived index for gray zone prostate cancer. Chin J Pract Diagn Ther. 2023;37(4):372-376. https://doi.org/10.11724/jdmu.2024.02.08
12. Mickley A, Kovaleva O, Kzhyshkowska J, Gratchev A. Molecular and immunologic markers of kidney cancer—potential applications in predictive, preventive and personalized medicine. EPMA J. 2015;6(1). https://doi.org/10.1186/s13167-015-0042-2
13. Takacova M, Bartosova M, Skvarkova L, et al. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol Lett. 2013;5(1):191–7. https://doi.org/10.3892/ol.2012.982
14. Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer. 2005;41(18):2935–47. https://doi.org/10.1016/j.ejca.2005.09.006
15. Choueiri TK, Cheng S, Qu AQ, et al. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: Analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013;31(8):1788–93. https://doi.org/10.1016/j.urolonc.2012.06.006
16. Bukavina L, Bensalah K, Bray F, et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur Urol. 2022;82(5):529–42. https://doi.org/10.1016/j.eururo.2022.08.019
17. Meng L, Collier KA, Wang P, et al. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells. 2023;13(1):34–4. https://doi.org/10.3390/cells13010034
18. Bui MHT, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9(2):802–11. https://doi.org/10.1158/1078-0432.CCR-02-0263
19. Bui M, Visapää H, Seligson D, et al. Prognostic value of carbonic anhydrase IX and Ki67 as predictors of survival for renal clear cell carcinoma. J Urol. 2004;171(6 Pt 1):2461–6. https://doi.org/10.1097/01.ju.0000125273.23155.2d
20. Sandlund J, Oosterwijk E, Grankvist K, et al. Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int. 2007;100(3):556–60. https://doi.org/10.1111/j.1464-410X.2007.07017.x
21. S J.A, Yaromina A, Houben R, et al. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front Oncol. 2016;6. https://doi.org/10.3389/fonc.2016.00069
22. Yang C, Zhang J, Ding M, et al. Ki67 targeted strategies for cancer therapy. Clin Transl Oncol. 2017;20(5):570–5. https://doi.org/10.1007/s12094-017-1777-1
23. Xiong W, Zhang B, Yu H, et al. RRM2 Regulates Sensitivity to Sunitinib and PD‐1 Blockade in Renal Cancer by Stabilizing ANXA1 and Activating the AKT Pathway. Adv Sci. 2021;8(18). https://doi.org/10.1002/advs.202100004
24. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 Is a Promising Molecular Target in the Diagnosis of Cancer (Review). Mol Med Rep. 2014;11(3):1566–72. https://doi.org/10.3892/mmr.2014.2914
25. Liu Y, Li Y, Xu H, et al. Exploration of Morphological Features of Clear Cell Renal Cell Carcinoma With PBRM1, SETD2, BAP1, or KDM5C Mutations. Int J Surg Pathol. 2023;31(8):1485–94. https://doi.org/10.1177/10668969231159958
26. Melincovici CS, Boșca AB, Șușman S, et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–467. https://doi.org/10.4323/rjme.59.2.455
27. Leow JJ, Ray S, Dason S, et al. The Promise of Neoadjuvant and Adjuvant Therapies for Renal Cancer. Urol Clin North Am. 2023;50(2):285–303. https://doi.org/10.1016/j.ucl.2023.01.005
28. Rassy E, Flippot R, Albiges L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther Adv Med Oncol. 2020;12:175883592090750. https://doi.org/10.1177/1758835920907504
29. Panthier F, Gauhar V, Ventimiglia E, et al. Rethinking stone-free rates and surgical outcomes in endourology: A point of view from PEARLS members. Eur Urol. 2024;86(3):198–199. https://doi.org/10.1016/j.eururo.2024.06.001
30. Pozdzik A, Grillo V, Sakhaee K. Gaps in kidney stone disease management: From clinical theory to patient reality. Urolithiasis. 2024;52(1):61. https://doi.org/10.1007/s00240-024-01563-6
31. Höglund M. Re: Alexander Cox, Niklas Klümper, Johannes Stein, et al. Molecular urothelial tumor cell subtypes remain stable during metastatic evolution. Eur Urol. 2023;84(2):50. https://doi.org/10.1016/j.eururo.2023.04.039
32. Giulioni C, Brocca C, Tramanzoli P, et al. Endoscopic intervention versus radical nephroureterectomy for the management of localized upper urinary tract urothelial carcinoma: A systematic review and meta-analysis of comparative studies. World J Urol. 2024;42(1):318. https://doi.org/10.1007/s00345-024-05032-y
33. Baruś P, Hunia J, Kaczorowski R, et al. Renal dysfunction increases risk of adverse cardiovascular events in 5-year follow-up study of intermediate coronary artery lesions. Med Sci Monit. 2024;30:e943956-1–e943956-10. https://doi.org/10.12659/MSM.943956
34. Vickers AJ. Re: Michael Baboudjian, Romain Diamand, Alessandro Uleri, et al. Does overgrading on targeted biopsy of magnetic resonance imaging–visible lesions in prostate cancer lead to overtreatment? Eur Urol. 2024;86(3):e71. https://doi.org/10.1016/j.eururo.2024.05.015
35. Wagner C, Harland N, Gloger D, et al. Robot-assisted surgery in the field of urology: The most pioneering approaches 2015–2023. Urology. 2024;178:173. https://doi.org/10.1016/j.urology.2022.12.002
36. Neuberger M, Dal Moro F. European Association of Urology Guidelines on Renal Transplantation: Update 2024. Eur Urol Focus. 2024;9(2):113–115. https://doi.org/10.1016/j.euf.2022.06.016
37. Hindson J. Urological cancer statistics in 2020. Nat Rev Urol. 2021;18(2):63. https://doi.org/10.1038/s41585-020-00407-6
38. Kelly SP, Anderson WF, Rosenberg PS, Cook MB. Past, Current, and Future Incidence Rates and Burden of Metastatic Prostate Cancer in the United States. Eur Urol Focus. 2018;4(1):121–127. https://doi.org/10.1016/j.euf.2017.10.009
39. Nuhn P, De Bono JS, Fizazi K, et al. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol. 2019;75(1):88–99. https://doi.org/10.1016/j.eururo.2018.08.001
40. Polasky C, Motamedi A, Zhang S, et al. Organoid Models of Human Prostate Cancer. Cancers. 2020;12(12):3507. https://doi.org/10.3390/cancers12123507
41. Laajala TD, Tattar A, Aittokallio T, et al. Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans Comput Biol Bioinform. 2021;18(3):1308–1318. https://doi.org/10.1109/TCBB.2019.2895897
42. Scott RP, Quaggin SE. Review series: The cell biology of renal filtration. J Cell Biol. 2015;209(2):199–210. https://doi.org/10.1083/jcb.201410035
43. Kramann R, Dirocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic kidney disease. Nat Rev Nephrol. 2013;9(12):700–711. https://doi.org/10.1038/nrneph.2013.134
44. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–326. https://doi.org/10.1146/annurev-physiol-022516-034227
45. Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery. 2000;127(2):117–126. https://doi.org/10.1067/msy.2000.103188
46. Choi MH, Kim CJ, Jung YJ, et al. Predictive factors for complications after robot-assisted partial nephrectomy: A comprehensive analysis. Sci Rep. 2021;11(1):19485. https://doi.org/10.1038/s41598-021-98740-3
47. Choi YH, Kim JK, Kim KR, Cho KS. Vascular anatomy of the kidney: A pictorial review. Insights Imaging. 2016;7(4):555–565. https://doi.org/10.1007/s13244-016-0506-2
48. Decaestecker K, Lumen N, Oosterlinck W. Kidney autotransplantation: A neglected treatment for complex renovascular disease and ureteric reconstruction. Eur Urol. 2013;64(4):779–785. https://doi.org/10.1016/j.eururo.2013.03.025
49. Bianchi G, Pini G, Montanari E, et al. Long-term outcomes of laparoscopic heminephrectomy for duplex kidney: Results of a multicenter study. J Pediatr Urol. 2019;15(2):142.e1–142.e7. https://doi.org/10.1016/j.jpurol.2018.11.003
50. Sahai A, Patel U, Chitale S, et al. Complications of percutaneous nephrolithotomy: A study of 1,000 cases from a single centre. J Endourol. 2006;20(10):752–757. https://doi.org/10.1089/end.2006.20.752
51. Srivastava A, Singh KJ, Suri A, et al. Vascular complications after percutaneous nephrolithotomy: Are there any predictive factors? Urology. 2005;66(1):38–40. https://doi.org/10.1016/j.urology.2005.02.028
52. Öztürk H. Management of hemorrhagic complications of percutaneous nephrolithotomy with angioembolization. Ren Fail. 2016;38(1):38–43. https://doi.org/10.3109/0886022X.2015.1100597
53. Dagli M, Ramchandani P. Percutaneous nephrostomy: Technical aspects and indications. Semin Intervent Radiol. 2011;28(4):424–437. https://doi.org/10.1055/s-0031-1296086
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bartosz Roś, Wojciech Kowalewski, Katarzyna Siekaniec, Magdalena Jakubowicz, Natalia Kuchenbeker, Adriana Dojs, Julia Mierzwińska-Mucha

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 20
Number of citations: 0