Breast milk: its components and special effects on newborns and infants
DOI:
https://doi.org/10.12775/JEHS.2025.81.60940Keywords
“human milk”, “milk microbiota”, “newborn's immune system”, “breastfeeding”Abstract
Background. Breastfeeding is the gold standard of infant nutrition, ensuring optimal growth, development, and formation of the immune system during the first six months of life. Breast milk is a unique biological medium that contains both macro- and micronutrients, and bioactive components such as bacteria, immunoglobulins, lactoferrin, oligosaccharides, stem cells, and microRNAs. These compounds play a key role in the formation of the intestinal microbiota of newborns, affecting immunity, metabolism, neurodevelopment, and psychoemotional state. Changes in the microbiome due to the type of feeding are associated with long-term risks of allergies, obesity, type 2 diabetes, autoimmune and infectious diseases. Despite significant progress in the study of breastfeeding, the mechanisms of interaction between its bioactive components and the intestinal microbiota remain poorly understood, necessitating a systematic analysis of current data. The aim of the study was to evaluate the relationship and impact of breastfeeding on the formation of the gut microbiome, immune system and neurodevelopment of infants, with a detailed look at the bioactive components of breast milk, such as microbiota, oligosaccharides, complement, immunoglobulins, stem cells and microRNAs. Materials and methods. To achieve this goal, a systematic literature review was conducted using PubMed, Scopus and Google Scholar databases. The search was carried out using the following keywords: ‘human milk’, “milk microbiota”, “newborn's immune system”, “breastfeeding”. Preference was given to systematic reviews, clinical trials, and analytical articles published in English. The analysis covered current, verified data on the composition of breast milk and its impact on the microbiota and infant health. Results. A systematic review found that breast milk is a dynamic biological medium that adapts to the needs of the infant through gradual changes in composition from colostrum to mature milk. Colostrum, which is rich in immunoglobulins (including IgA), lactoferrin, leukocytes and epidermal growth factor, provides primary immune defence by stimulating tissue regeneration and intestinal barrier function. Transitional milk, which appears on days 4-14, increases the energy value due to increased lactose and fat content, promoting weight gain and microbiota development. Mature milk stabilises the nutritional profile, supporting growth and metabolism due to its high content of lipids, carbohydrates, and micronutrients such as vitamins A, B and D, depending on the mother's diet. The microbiota of milk, which includes hundreds of bacterial species (Streptococcus, Staphylococcus, Bifidobacterium, Lactobacillus), forms the intestinal microbiome, reducing the risk of dysbiosis and infections by competitively displacing pathogens and stimulating anti-inflammatory cytokines. Milk oligosaccharides act as prebiotics, promoting the growth of beneficial bacteria and preventing pathogen adhesion, which strengthens the intestinal barrier. Short-chain fatty acids (SCFAs), metabolites of bacteria, modulate the immune system, reducing the risk of atopic diseases, although their levels are reduced in mothers with allergies. Lactoferrin has antimicrobial, antifungal, and immunomodulatory effects, supporting the growth of beneficial microorganisms. Complement components selectively regulate the microbiota, destroying gram-positive bacteria, which contributes to microbial balance. Immune cells (neutrophils, macrophages, lymphocytes) and peptides (α-lactalbumin, casein, lysozyme) provide protection and digestion, while stem cells and microRNAs influence epigenetic regulation, promoting neurodevelopment and immune maturation. Conclusions. Breastfeeding, through the synergy of bioactive components, promotes a healthy intestinal microbiota, supports immunity and neurodevelopment, reducing the risk of allergies, metabolic and neurological disorders. However, the mechanisms of action of individual components, such as microRNAs, stem cells and the impact of maternal diet, require further research. The results highlight the importance of supporting breastfeeding for infants, as there is currently no infant formula that reproduces the bioactive properties of breast milk.
References
1. Verduci E, Giannì ML, Di Benedetto A. Human Milk Feeding in Preterm Infants: What Has Been Done and What Is to Be Done. Nutrients. 2019 Dec 23;12(1):44. doi: 10.3390/nu12010044. PMID: 31877960; PMCID: PMC7020077.
2. Yi DY, Kim SY. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients. 2021 Sep 2;13(9):3094. doi: 10.3390/nu13093094. PMID: 34578971; PMCID: PMC8471419.
3. Bode L, Raman AS, Murch SH, Rollins NC, Gordon JI. Understanding the mother-breastmilk-infant "triad". Science. 2020 Mar 6;367(6482):1070-1072. doi: 10.1126/science.aaw6147. PMID: 32139527.
4. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013 Feb;60(1):49-74. doi: 10.1016/j.pcl.2012.10.002. PMID: 23178060; PMCID: PMC3586783.
5. Jensen, R. G., and D. S. Newburg. "Bovine milk lipids. Handbook of milk composition." Handbook of Milk Composition 85.2 (1995): 295-350.
6. Kulski JK, Hartmann PE. Changes in human milk composition during the initiation of lactation. Aust J Exp Biol Med Sci. 1981 Feb;59(1):101-14. doi: 10.1038/icb.1981.6. PMID: 7236122.
7. Nommsen-Rivers LA, Dolan LM, Huang B. Timing of stage II lactogenesis is predicted by antenatal metabolic health in a cohort of primiparas. Breastfeed Med. 2012 Feb;7(1):43-9. doi: 10.1089/bfm.2011.0007. Epub 2011 Apr 27. PMID: 21524193; PMCID: PMC3546359.
8. Lönnerdal B. Human milk proteins: key components for the biological activity of human milk. Adv Exp Med Biol. 2004;554:11-25. PMID: 15384564.
9. Toscano M, De Grandi R, Grossi E, Drago L. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review. Front Microbiol. 2017 Oct 25;8:2100. doi: 10.3389/fmicb.2017.02100. PMID: 29118752; PMCID: PMC5661030.
10. Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, Haymond M, Aagaard K. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One. 2013;8(2):e50564. doi: 10.1371/journal.pone.0050564. Epub 2013 Feb 13. PMID: 23418415; PMCID: PMC3572105.
11. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front Immunol. 2018 Feb 28;9:361. doi: 10.3389/fimmu.2018.00361. PMID: 29599768; PMCID: PMC5863526.
12. Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, Rodríguez JM. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013 Mar;69(1):1-10. doi: 10.1016/j.phrs.2012.09.001. Epub 2012 Sep 10. PMID: 22974824.
13. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, Adisetiyo H, Zabih S, Lincez PJ, Bittinger K, Bailey A, Bushman FD, Sleasman JW, Aldrovandi GM. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017 Jul 1;171(7):647-654. doi: 10.1001/jamapediatrics.2017.0378. PMID: 28492938; PMCID: PMC5710346.
14. Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic Review of the Human Milk Microbiota. Nutr Clin Pract. 2017 Jun;32(3):354-364. doi: 10.1177/0884533616670150. Epub 2016 Sep 27. PMID: 27679525.
15. Toscano M, De Grandi R, Grossi E, Drago L. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review. Front Microbiol. 2017 Oct 25;8:2100. doi: 10.3389/fmicb.2017.02100. PMID: 29118752; PMCID: PMC5661030.
16. Fichter M, Klotz M, Hirschberg DL, Waldura B, Schofer O, Ehnert S, Schwarz LK, Ginneken CV, Schäfer KH. Breast milk contains relevant neurotrophic factors and cytokines for enteric nervous system development. Mol Nutr Food Res. 2011 Oct;55(10):1592-6. doi: 10.1002/mnfr.201100124. Epub 2011 Aug 2. PMID: 21809438.
17. Solange Jara, Magaly Sánchez, Rodrigo Vera, Jaime Cofré, Erica Castro.The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin,Anaerobe, Volume 17, Issue 6, 2011, Pages 474-477, ISSN 1075-9964, https://doi.org/10.1016/j.anaerobe.2011.07.008.
18. Lyons A, O'Mahony D, O'Brien F, MacSharry J, Sheil B, Ceddia M, Russell WM, Forsythe P, Bienenstock J, Kiely B, Shanahan F, O'Mahony L. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy. 2010 May;40(5):811-9. doi: 10.1111/j.1365-2222.2009.03437.x. Epub 2010 Jan 11. PMID: 20067483.
19. Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M, Lara-Villoslada F. Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 2012 Jan;54(1):55-61. doi: 10.1097/MPG.0b013e3182333f18. Erratum in: J Pediatr Gastroenterol Nutr. 2012 Apr;54(4):571. PMID: 21873895.
20. Toscano M, De Grandi R, Grossi E, Drago L. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review. Front Microbiol. 2017 Oct 25;8:2100. doi: 10.3389/fmicb.2017.02100. PMID: 29118752; PMCID: PMC5661030.
21. Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006 Jun;72(6):4497-9. doi: 10.1128/AEM.02515-05. PMID: 16751577; PMCID: PMC1489581.
22. Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37-58. doi: 10.1146/annurev.nutr.25.050304.092553. PMID: 16011458.
23. Kim KU, Kim WH, Jeong CH, Yi DY, Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int J Mol Sci. 2020 Oct 3;21(19):7327. doi: 10.3390/ijms21197327. PMID: 33023062; PMCID: PMC7582863.
24. Carr LE, Virmani MD, Rosa F, Munblit D, Matazel KS, Elolimy AA, Yeruva L. Role of Human Milk Bioactives on Infants' Gut and Immune Health. Front Immunol. 2021 Feb 12;12:604080. doi: 10.3389/fimmu.2021.604080. PMID: 33643310; PMCID: PMC7909314.
25. Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016 Jul;12(7):383-401. doi: 10.1038/nrneph.2016.70. Epub 2016 May 23. PMID: 27211870; PMCID: PMC4974115.
26. Xu D, Zhou S, Liu Y, Scott AL, Yang J, Wan F. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell. 2024 Feb 1;187(3):750-763.e20. doi: 10.1016/j.cell.2023.12.019. Epub 2024 Jan 18. PMID: 38242132; PMCID: PMC10872564.
27. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol. 2021 May 13;12:683022. doi: 10.3389/fimmu.2021.683022. PMID: 34054875; PMCID: PMC8158941.
28. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, Meltser A, Douglas GM, Kamer I, Gopalakrishnan V, Dadosh T, Levin-Zaidman S, Avnet S, Atlan T, Cooper ZA, Arora R, Cogdill AP, Khan MAW, Ologun G, Bussi Y, Weinberger A, Lotan-Pompan M, Golani O, Perry G, Rokah M, Bahar-Shany K, Rozeman EA, Blank CU, Ronai A, Shaoul R, Amit A, Dorfman T, Kremer R, Cohen ZR, Harnof S, Siegal T, Yehuda-Shnaidman E, Gal-Yam EN, Shapira H, Baldini N, Langille MGI, Ben-Nun A, Kaufman B, Nissan A, Golan T, Dadiani M, Levanon K, Bar J, Yust-Katz S, Barshack I, Peeper DS, Raz DJ, Segal E, Wargo JA, Sandbank J, Shental N, Straussman R. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020 May 29;368(6494):973-980. doi: 10.1126/science.aay9189. PMID: 32467386; PMCID: PMC7757858.
29. Goudarzi N, Shabani R, Ebrahimi M, Baghestani A, Dehdashtian E, Vahabzadeh G, Soleimani M, Moradi F, Katebi M. Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells. Hum Cell. 2020 Apr;33(2):308-317. doi: 10.1007/s13577-019-00320-x. Epub 2020 Jan 23. PMID: 31975030.
30. Gialeli G, Panagopoulou O, Liosis G, Siahanidou T. Potential Epigenetic Effects of Human Milk on Infants’ Neurodevelopment. Nutrients. 2023 Aug 17;15(16):3614. doi: 10.3390/nu15163614. PMID: 37630804; PMCID: PMC10460013.
31. Carrillo-Lozano E, Sebastián-Valles F, Knott-Torcal C. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients. 2020; 12(10):3066. https://doi.org/10.3390/nu12103066
32. Melnik, B.C., John, S.M. & Schmitz, G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 12, 103 (2013). https://doi.org/10.1186/1475-2891-12-103
33. Kramer MS, Aboud F, Mironova E, Vanilovich I, Platt RW, Matush L, Igumnov S, Fombonne E, Bogdanovich N, Ducruet T, Collet JP, Chalmers B, Hodnett E, Davidovsky S, Skugarevsky O, Trofimovich O, Kozlova L, Shapiro S; Promotion of Breastfeeding Intervention Trial (PROBIT) Study Group. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatry. 2008 May;65(5):578-84. doi: 10.1001/archpsyc.65.5.578. PMID: 18458209.
34. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014 Feb;20(2):159-66. doi: 10.1038/nm.3444. Epub 2014 Jan 5. PMID: 24390308.
35. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, Roberts LK, Wong CH, Shim R, Robert R, Chevalier N, Tan JK, Mariño E, Moore RJ, Wong L, McConville MJ, Tull DL, Wood LG, Murphy VE, Mattes J, Gibson PG, Mackay CR. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015 Jun 23;6:7320. doi: 10.1038/ncomms8320. PMID: 26102221.
36. Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients. 2021 Aug 31;13(9):3071. doi: 10.3390/nu13093071. PMID: 34578947; PMCID: PMC8465002.21:05
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 T. Voroncova, T. Konyk, M. Trokhymenko, Y. Mudryk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 165
Number of citations: 0