Gene Therapy and Down Syndrome: Can the future of Medicine bring a breakthrough?
DOI:
https://doi.org/10.12775/JEHS.2025.82.60525Keywords
Down syndrome, CRISPR-Cas Systems, Gene therapy, Gene Silencing, Early diagnosis, Neurodevelopment disordersAbstract
Down syndrome (DS), or trisomy 21, is the most common chromosomal disorder, characterized by intellectual disability, congenital anomalies, and an increased risk of neurodegenerative diseases. This review synthesizes current knowledge on the etiology, clinical presentation, and modern therapeutic strategies for DS, including early intervention, medical management, and psychosocial support. Particular emphasis is placed on the revolutionary potential of CRISPR-Cas gene-editing technology as a tool for future treatment strategies. Drawing upon findings from many scientific publications, the article discusses the mechanism of CRISPR, its current medical applications, and its experimental use in silencing the extra chromosome 21 or correcting DS-associated genes. Technical, ethical, and delivery-related limitations are explored, alongside speculative but promising research directions, including base editing, prime editing, and cerebral organoids. The article concludes with a reflection on whether societal perceptions of genetic diversity should evolve alongside scientific innovation, highlighting that the greatest breakthrough may come not from altering genomes, but from fostering inclusion and understanding.
References
1. Antonarakis, S. E., et al. (2021). Down syndrome. Nature Reviews Disease Primers, 6(1):9. DOI: https://doi.org/10.1038/s41572-019-0143-7 PMID:32029743
2. Blanco-Montaño, A., et al. (2023). Factores de riesgo en el origen del síndrome de Down. Revista Médica del IMSS, 61(5), 638–644. DOI: https://doi.org/10.5281/zenodo.8316459 PMID:3779135
3. Asim, A., et al. (2015). Down syndrome: an insight of the disease. Journal of Biomedical Science, 22, 41. DOI: https://doi.org/10.1186/s12929-015-0138-y PMID:26062604
4. Lorenzon, N., et al. (2023). State-of-the-art therapy for Down syndrome. Dev. Med. Child Neurol., 65(7), 870–884. DOI: https://doi.org/10.1111/dmcn.15517 PMID:36692980
5. Congting, G., et al. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers of Bioengineering and Biotechnology. DOI: https://doi.org/10.3389/fbioe.2023.1143157 PMID:36970624
6. Tyumentseva, M., et al. (2023). CRISPR/Cas9 Landscape: Current State and Future Perspectives. International Journal of Molecular Science., 24,16077 DOI: https://doi.org/10.3390/ijms242216077 PMID:38003266
7. Sharma, G., et al. (2021). CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. 29(2).Molecular Therapy. DOI: https://doi.org/10.1016/j.ymthe.2020.09.028 PMID:33238136
8. Bhowmik, R., et al. (2022). CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Research and Therapy. DOI: https://doi.org/10.1186/s12981-022-00483-y PMID:36457057
9. Du, Y., et al. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences. 18(2023)100854 DOI: https://doi.org/10.1016/j.ajps.2023.100854 PMID:38089835
10. Xu, X., et al. (2021). Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Advanced Drug Delivery Reviews.176(2021)113891 DOI: https://doi.org/10.1016/j.addr.2021.113891 PMID: 34324887
11. Laurent, M., et al. (2024). CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells. DOI: https://doi.org/10.3390/cells13100800 PMID:38786024
12. Hilary, V. Edwin, et al. (2023). A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/ Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology (2023) 65:311–325. DOI: https://doi.org/10.1007/s12033-022-00567-0 PMID:36163606
13. Liu, N., et al. (2022). CRISPR Modeling and Correction of Cardiovascular Disease. HHS Circ Res. DOI: https://doi.org/10.1161/CIRCRESAHA.122.320496. PMID:35679361
14. Nambiar, T.S., et al. (2022). CRISPR-Based Genome Editing Through the Lens of DNA Repair. HHS Mol Cell 82(2): 348–388. DOI: https://doi.org/10.1016/j.molcel.2021.12.026. PMID:35063100
15. Hendriks, D., (2020). CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Stem Cell Stem. 27(5). DOI: https://doi.org/10.1016/j.stem.2020.10.014 PMID:33157047
16. Kagan, K.O., et al. (2022). Antenatal screening for chromosomal abnormalities. Archives of Gynecology and Obstetrics. 305:825–835 DOI: https://doi.org/10.1007/s00404-022-06477-5 PMID:35279726
17. Baruchel, A., et al. (2023). Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica. Vol.108 No.10 DOI: https://doi.org/10.3324/haematol.2023.283225 PMID:37439336
18. Abedalthagafi, M., et al. (2023). Non-invasive prenatal testing: a revolutionary journey in prenatal testing. Frontiers in Medicine. Vol.10. DOI: https://doi.org/10.3389/fmed.2023.1265090 PMID:38020177
19. Lanoo, L., et al. (2022). Rare autosomal trisomies detected by non-invasive prenatal testing: an overview of current knowledge. European Journal of Human Genetics (2022) 30:1323–1330. DOI: https://doi.org/10.1038/s41431-022-01147-1 PMID:35896702
20. Sperling, K., et al. (2023). Population monitoring of trisomy 21: problems and approaches. Molecular Cytogenetics. 16:6 DOI: https://doi.org/10.1186/s13039-023-00637-1 PMID: 37183244
21. Deborah, K.S., et al. (2024). Alzheimer’s Drugs APPlication for Down syndrome? Ageing Research Reviews. 96: 102281. DOI: https://doi.org/10.1016/j.arr.2024.102281. PMID:38513771
22. Torres, E.M, (2023). Consequences of gaining an extra chromosome. Chromosome Research 31:24 DOI: https://doi.org/10.1007/s10577-023-09732-w PMID:37620607
23. Buczyńska , A., et al. (2023). The Role of Oxidative Stress in Trisomy 21 Phenotype. Cellular and Molecular Neurobiology 43(8):3943–3963 DOI: https://doi.org/10.1007/s10571-023-01417-6 PMID:37819608
24. Laurent, A.P., et al. (2020). Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia (2020) 34(8):1984–1999 DOI: https://doi.org/10.1038/s41375-020-0854-5 PMID:32433508
25. Levin, J., et al. (2023). Diseases Affecting Middle-Aged and Elderly Individuals With Trisomy 21. Dtsch Arztebl Int 2023; 120: 14–24. DOI: https://doi.org/10.3238/arztebl.m2022.0371 PMID: 36468261
26. Buczyńska, A., et al. (2021). Novel Approaches to an Integrated Route for Trisomy 21 Evaluation. Biomolecules. DOI: https://doi.org/10.3390/biom11091328 PMID:34572541
27. Wu, Y., et al. (2022). Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signaling, 6(1) NS20210054 DOI: https://doi.org/10.1042/NS20210054 PMID: 35449591
28. Di Matei, V., et al. (2021). Decision-making factors in prenatal testing: A systematic review. Health Psychol Open. DOI: https://doi.org/10.1177/2055102920987455 PMID:33489303
29. Saini, F., et al. (2022). Structural Connectivity in Down Syndrome and Alzeimer’s Disease. Frontiers in Neuroscience. DOI: https://doi.org/10.3389/fnins.2022.908413 PMID:35937882
30. Krivega, M., et al. (2022). Consequences of chromosome gain: A new view on trisomy syndromes. The American Journal of Human Genetics 109, 2126–2140, December 1, 2022. DOI: https://doi.org/10.1016/j.ajhg.2022.10.014. PMID: 36459979
31. Giono L.E, (2017). Crispr/Cas9 Y La Terapia Génica. Medicina (B Aires) - Volumen 77 - Nº 5, 2017 DOI: N/A PMID: 29044017
32. Exposito, J., et al. (2023). TERAPIA GENICA: ¿DÓNDE ESTAMOS?, ¿A DÓNDE VAMOS?. Medicina (B Aires). DOI: n/a PMID: 37714117
33. Shinwari, Z. K., et al. (2018). Ethical Issues Regarding CRISPR-mediated Genome Editing. Current Issues Of Molecular Biology. DOI: https://doi.org/10.21775/cimb.026.103 PMID:28879860
34. Janik, E., et al. (2020). Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences. DOI: https://doi.org/10.3390/ijms21249604 PMID: 33339441
35. Redman, M., et al. (2016). What is CRISPR/Cas9?. Arch Dis Child Educ Pract Ed 2016;101:213–215. DOI: https://doi.org/10.1136/archdischild-2016-310459 PMID:27059283
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Gondek, Maria Wojcieszek, Maksymilian Czarnota, Dominika Gacka, Magdalena Fidelis, Aleksandra Żołnierek , Aleksandra Mączyńska, Wiktoria Szumlińska, Noor Alhuda Al-karawi, Paulina Kędziorek, Zuzanna Tanç

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 20
Number of citations: 0