Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Gene Therapy and Down Syndrome: Can the future of Medicine bring a breakthrough?
  • Home
  • /
  • Gene Therapy and Down Syndrome: Can the future of Medicine bring a breakthrough?
  1. Home /
  2. Archives /
  3. Vol. 82 (2025) /
  4. Medical Sciences

Gene Therapy and Down Syndrome: Can the future of Medicine bring a breakthrough?

Authors

  • Katarzyna Gondek https://orcid.org/0009-0001-2833-8287
  • Maria Wojcieszek https://orcid.org/0009-0008-3807-7317
  • Maksymilian Czarnota Szpital Morski im. PCK w Gdyni https://orcid.org/0009-0002-9322-4494
  • Dominika Gacka Szpital Morski im. PCK, ul. Powstania Styczniowego 1, 81-519 Gdynia, Poland https://orcid.org/0009-0006-7444-0326
  • Magdalena Fidelis Szpital Morski im. PCK, ul. Powstania Styczniowego 1, 81-519 Gdynia, Poland https://orcid.org/0009-0001-7356-8065
  • Aleksandra Żołnierek https://orcid.org/0009-0000-0396-4479
  • Aleksandra Mączyńska LUX MED Sp. z o.o., ul. Szturmowa 2, 02-678 Warszawa, Poland https://orcid.org/0009-0006-6887-8188
  • Wiktoria Szumlińska PIM MSWiA https://orcid.org/0009-0001-5286-4228
  • Noor Alhuda Al-karawi PIM MSWiA w Warszawie, ul.Wołoska 137, 02-507 Warszawa, Poland https://orcid.org/0009-0005-6647-1520
  • Paulina Kędziorek SPZOZ - ZZ im. Duńskiego Czerwonego Krzyża, ul. Wincentego Witosa 2, 06-200 Maków Mazowiecki, Poland https://orcid.org/0009-0002-8126-5803
  • Zuzanna Tanç Samodzielny Publiczny Zakład Opieki Zdrowotnej - Zespół Zakładów w Makowie Mazowieckim https://orcid.org/0009-0009-3030-7592

DOI:

https://doi.org/10.12775/JEHS.2025.82.60525

Keywords

Down syndrome, CRISPR-Cas Systems, Gene therapy, Gene Silencing, Early diagnosis, Neurodevelopment disorders

Abstract

Down syndrome (DS), or trisomy 21, is the most common chromosomal disorder, characterized by intellectual disability, congenital anomalies, and an increased risk of neurodegenerative diseases. This review synthesizes current knowledge on the etiology, clinical presentation, and modern therapeutic strategies for DS, including early intervention, medical management, and psychosocial support. Particular emphasis is placed on the revolutionary potential of CRISPR-Cas gene-editing technology as a tool for future treatment strategies. Drawing upon findings from many scientific publications, the article discusses the mechanism of CRISPR, its current medical applications, and its experimental use in silencing the extra chromosome 21 or correcting DS-associated genes. Technical, ethical, and delivery-related limitations are explored, alongside speculative but promising research directions, including base editing, prime editing, and cerebral organoids. The article concludes with a reflection on whether societal perceptions of genetic diversity should evolve alongside scientific innovation, highlighting that the greatest breakthrough may come not from altering genomes, but from fostering inclusion and understanding.

References

1. Antonarakis, S. E., et al. (2021). Down syndrome. Nature Reviews Disease Primers, 6(1):9. DOI: https://doi.org/10.1038/s41572-019-0143-7 PMID:32029743

2. Blanco-Montaño, A., et al. (2023). Factores de riesgo en el origen del síndrome de Down. Revista Médica del IMSS, 61(5), 638–644. DOI: https://doi.org/10.5281/zenodo.8316459 PMID:3779135

3. Asim, A., et al. (2015). Down syndrome: an insight of the disease. Journal of Biomedical Science, 22, 41. DOI: https://doi.org/10.1186/s12929-015-0138-y PMID:26062604

4. Lorenzon, N., et al. (2023). State-of-the-art therapy for Down syndrome. Dev. Med. Child Neurol., 65(7), 870–884. DOI: https://doi.org/10.1111/dmcn.15517 PMID:36692980

5. Congting, G., et al. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers of Bioengineering and Biotechnology. DOI: https://doi.org/10.3389/fbioe.2023.1143157 PMID:36970624

6. Tyumentseva, M., et al. (2023). CRISPR/Cas9 Landscape: Current State and Future Perspectives. International Journal of Molecular Science., 24,16077 DOI: https://doi.org/10.3390/ijms242216077 PMID:38003266

7. Sharma, G., et al. (2021). CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. 29(2).Molecular Therapy. DOI: https://doi.org/10.1016/j.ymthe.2020.09.028 PMID:33238136

8. Bhowmik, R., et al. (2022). CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Research and Therapy. DOI: https://doi.org/10.1186/s12981-022-00483-y PMID:36457057

9. Du, Y., et al. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences. 18(2023)100854 DOI: https://doi.org/10.1016/j.ajps.2023.100854 PMID:38089835

10. Xu, X., et al. (2021). Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Advanced Drug Delivery Reviews.176(2021)113891 DOI: https://doi.org/10.1016/j.addr.2021.113891 PMID: 34324887

11. Laurent, M., et al. (2024). CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells. DOI: https://doi.org/10.3390/cells13100800 PMID:38786024

12. Hilary, V. Edwin, et al. (2023). A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/ Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology (2023) 65:311–325. DOI: https://doi.org/10.1007/s12033-022-00567-0 PMID:36163606

13. Liu, N., et al. (2022). CRISPR Modeling and Correction of Cardiovascular Disease. HHS Circ Res. DOI: https://doi.org/10.1161/CIRCRESAHA.122.320496. PMID:35679361

14. Nambiar, T.S., et al. (2022). CRISPR-Based Genome Editing Through the Lens of DNA Repair. HHS Mol Cell 82(2): 348–388. DOI: https://doi.org/10.1016/j.molcel.2021.12.026. PMID:35063100

15. Hendriks, D., (2020). CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Stem Cell Stem. 27(5). DOI: https://doi.org/10.1016/j.stem.2020.10.014 PMID:33157047

16. Kagan, K.O., et al. (2022). Antenatal screening for chromosomal abnormalities. Archives of Gynecology and Obstetrics. 305:825–835 DOI: https://doi.org/10.1007/s00404-022-06477-5 PMID:35279726

17. Baruchel, A., et al. (2023). Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica. Vol.108 No.10 DOI: https://doi.org/10.3324/haematol.2023.283225 PMID:37439336

18. Abedalthagafi, M., et al. (2023). Non-invasive prenatal testing: a revolutionary journey in prenatal testing. Frontiers in Medicine. Vol.10. DOI: https://doi.org/10.3389/fmed.2023.1265090 PMID:38020177

19. Lanoo, L., et al. (2022). Rare autosomal trisomies detected by non-invasive prenatal testing: an overview of current knowledge. European Journal of Human Genetics (2022) 30:1323–1330. DOI: https://doi.org/10.1038/s41431-022-01147-1 PMID:35896702

20. Sperling, K., et al. (2023). Population monitoring of trisomy 21: problems and approaches. Molecular Cytogenetics. 16:6 DOI: https://doi.org/10.1186/s13039-023-00637-1 PMID: 37183244

21. Deborah, K.S., et al. (2024). Alzheimer’s Drugs APPlication for Down syndrome? Ageing Research Reviews. 96: 102281. DOI: https://doi.org/10.1016/j.arr.2024.102281. PMID:38513771

22. Torres, E.M, (2023). Consequences of gaining an extra chromosome. Chromosome Research 31:24 DOI: https://doi.org/10.1007/s10577-023-09732-w PMID:37620607

23. Buczyńska , A., et al. (2023). The Role of Oxidative Stress in Trisomy 21 Phenotype. Cellular and Molecular Neurobiology 43(8):3943–3963 DOI: https://doi.org/10.1007/s10571-023-01417-6 PMID:37819608

24. Laurent, A.P., et al. (2020). Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia (2020) 34(8):1984–1999 DOI: https://doi.org/10.1038/s41375-020-0854-5 PMID:32433508

25. Levin, J., et al. (2023). Diseases Affecting Middle-Aged and Elderly Individuals With Trisomy 21. Dtsch Arztebl Int 2023; 120: 14–24. DOI: https://doi.org/10.3238/arztebl.m2022.0371 PMID: 36468261

26. Buczyńska, A., et al. (2021). Novel Approaches to an Integrated Route for Trisomy 21 Evaluation. Biomolecules. DOI: https://doi.org/10.3390/biom11091328 PMID:34572541

27. Wu, Y., et al. (2022). Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signaling, 6(1) NS20210054 DOI: https://doi.org/10.1042/NS20210054 PMID: 35449591

28. Di Matei, V., et al. (2021). Decision-making factors in prenatal testing: A systematic review. Health Psychol Open. DOI: https://doi.org/10.1177/2055102920987455 PMID:33489303

29. Saini, F., et al. (2022). Structural Connectivity in Down Syndrome and Alzeimer’s Disease. Frontiers in Neuroscience. DOI: https://doi.org/10.3389/fnins.2022.908413 PMID:35937882

30. Krivega, M., et al. (2022). Consequences of chromosome gain: A new view on trisomy syndromes. The American Journal of Human Genetics 109, 2126–2140, December 1, 2022. DOI: https://doi.org/10.1016/j.ajhg.2022.10.014. PMID: 36459979

31. Giono L.E, (2017). Crispr/Cas9 Y La Terapia Génica. Medicina (B Aires) - Volumen 77 - Nº 5, 2017 DOI: N/A PMID: 29044017

32. Exposito, J., et al. (2023). TERAPIA GENICA: ¿DÓNDE ESTAMOS?, ¿A DÓNDE VAMOS?. Medicina (B Aires). DOI: n/a PMID: 37714117

33. Shinwari, Z. K., et al. (2018). Ethical Issues Regarding CRISPR-mediated Genome Editing. Current Issues Of Molecular Biology. DOI: https://doi.org/10.21775/cimb.026.103 PMID:28879860

34. Janik, E., et al. (2020). Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences. DOI: https://doi.org/10.3390/ijms21249604 PMID: 33339441

35. Redman, M., et al. (2016). What is CRISPR/Cas9?. Arch Dis Child Educ Pract Ed 2016;101:213–215. DOI: https://doi.org/10.1136/archdischild-2016-310459 PMID:27059283

Journal of Education, Health and Sport

Downloads

  • PDF

Published

2025-06-30

How to Cite

1.
GONDEK, Katarzyna, WOJCIESZEK, Maria, CZARNOTA, Maksymilian, GACKA, Dominika, FIDELIS, Magdalena, ŻOŁNIEREK , Aleksandra, MĄCZYŃSKA, Aleksandra, SZUMLIŃSKA, Wiktoria, ALHUDA AL-KARAWI, Noor, KĘDZIOREK, Paulina and TANÇ, Zuzanna. Gene Therapy and Down Syndrome: Can the future of Medicine bring a breakthrough?. Journal of Education, Health and Sport. Online. 30 June 2025. Vol. 82, p. 60525. [Accessed 3 July 2025]. DOI 10.12775/JEHS.2025.82.60525.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 82 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Katarzyna Gondek, Maria Wojcieszek, Maksymilian Czarnota, Dominika Gacka, Magdalena Fidelis, Aleksandra Żołnierek , Aleksandra Mączyńska, Wiktoria Szumlińska, Noor Alhuda Al-karawi, Paulina Kędziorek, Zuzanna Tanç

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 20
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Down syndrome, CRISPR-Cas Systems, Gene therapy, Gene Silencing, Early diagnosis, Neurodevelopment disorders
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop