Alzheimer’s Disease in the Context of an Aging Society: Challenges and Future Directions
DOI:
https://doi.org/10.12775/JEHS.2025.83.60509Keywords
Alzheimer’s disease, amyloid-β, tau protein, monoclonal antibodies, lecanemab, donanemab, aducanumab, APOE4, gene therapy, neuroinflammation, dementia, aging population, ARIA, neurodegenerationAbstract
Alzheimer’s disease (AD) remains the most prevalent form of dementia and a pressing public health concern, particularly in the context of global population aging. The pathogenesis of AD involves a multifactorial interplay of genetic, molecular, and immunological mechanisms, with amyloid-β (Aβ) and tau protein playing pivotal roles. Current pharmacological treatments provide symptomatic relief but lack disease-modifying effects. Recent advancements in anti-Aβ monoclonal antibodies such as aducanumab, lecanemab, and donanemab mark a significant shift in therapeutic strategies, although their clinical effectiveness and safety are still being carefully evaluated. Emerging therapeutic strategies, including gene therapy, tau-targeted interventions, neurostimulation techniques, and modulation of the gut microbiome, demonstrate potential but remain largely at the experimental stage, with limited or no clinical evaluation in humans to date. This review discusses the epidemiology, pathogenesis, and current as well as future directions in AD treatment.
MATERIAL AND METHODS
This article is based on a narrative review of recent research findings and clinical data related to Alzheimer's disease. It includes epidemiological statistics, clinical trial outcomes, and discusses both established pharmacological treatments and newly introduced therapies, such as monoclonal antibodies. The review also highlights emerging strategies, including gene therapies and novel therapeutic targets. Overall, it synthesizes current evidence to outline recent advances and identify areas for future research and development.
References
[1] Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol. 2018;25(1):59-70. doi:10.1111/ene.13439
[2] World Health Organization. Dementia [Internet]. 2023 [cited 2025 Apr 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia
[3] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-90. doi:10.1016/S0140-6736(20)32205-4
[4] Prince M, Albanese E, Guerchet M, et al. World Alzheimer Report 2014: Dementia and Risk Reduction. Alzheimer's Disease International; 2014.
[5] Alzheimer's Disease International. World Alzheimer Report 2018. The state of the art of dementia research: new frontiers. 2018.
[6] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-6. doi:10.1126/science.1072994
[7] Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189. doi:10.1101/cshperspect.a006189
[8] Bateman RJ, Aisen PS, De Strooper B, et al. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther. 2011;3(1):1. doi:10.1186/alzrt59
[9] Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 2011;10(3):241-52. doi:10.1016/S1474-4422(10)70325-2
[10] Escott-Price V, Sims R, Bannister C, et al. Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain. 2015;138(Pt 12):3673-84. doi:10.1093/brain/awv268
[11] Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell. 2025;16(2):83-120. doi:10.1093/procel/pwae026
[12] Liu E, Wang X, Xie H, et al. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener. 2024;13(1):45. doi:10.1186/s40035-024-00432-x
[13] Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi:10.2174/1570159x13666150716165726
[14] Galimberti D, Scarpini E. Immunotherapy against amyloid pathology in Alzheimer's disease. J Neurol Sci. 2013;333(1-2):50-4. doi:10.1016/j.jns.2012.12.013
[15] Reisberg B, Doody R, Stöffler A, et al. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med. 2003;348(14):1333-41. doi:10.1056/NEJMoa013128
[16] Robinson DM, Keating GM. Memantine: a review of its use in Alzheimer's disease. Drugs. 2006;66(11):1515-34. doi:10.2165/00003495-200666110-00015
[17] Rahman A, Kareem MA, Zaidi SZ, et al. Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics. 2023;23(3):512-22. doi:10.1111/psyg.12944
[18] van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023;388(1):9-21. doi:10.1056/NEJMoa2212948
[19] U.S. Food and Drug Administration. FDA approves treatment for adults with Alzheimer's disease [Internet]. 2023 [cited 2025 Apr 17]. Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-adults-alzheimers-disease
[20] Hampel H, Buerger K, Teipel SJ, et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain. 2023;146(11):4414-24. doi:10.1093/brain/awad188
[21] Vaz M, Silvestre S, Sousa JJ, et al. Role of Aducanumab in the Treatment of Alzheimer's Disease: Challenges and Opportunities. Clin Interv Aging. 2022;17:797-810. doi:10.2147/CIA.S325026
[22] U.S. Food and Drug Administration. FDA’s decision to approve new treatment for Alzheimer’s disease [Internet]. 2023 [cited 2025 Apr 17]. Available from: https://www.fda.gov/drugs/our-perspective/fdas-decision-approve-new-treatment-alzheimers-disease
[23] European Medicines Agency. Aduhelm. European public assessment report (EPAR) [Internet]. 2023 [cited 2025 Apr 17]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/aduhelm
[24] U.S. National Library of Medicine. ClinicalTrials.gov Identifier: NCT05310071 [Internet]. [cited 2025 Apr 17]. Available from: https://clinicaltrials.gov/ct2/show/NCT05310071
[25] Dyer O. Aduhelm: Biogen abandons Alzheimer's drug after controversial approval left it unfunded by Medicare. BMJ. 2024;384:q281. doi:10.1136/bmj.q281
[26] Abdelazim K, Ebrahim M, Soliman K, et al. The efficacy and safety of lecanemab 10 mg/kg biweekly compared to a placebo in patients with Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci. 2024;45(8):3583-97. doi:10.1007/s10072-024-07477-w
[27] Larkin HD. Lecanemab Gains FDA Approval for Early Alzheimer Disease. JAMA. 2023;329(5):363. doi:10.1001/jama.2022.24490
[28] European Medicines Agency. Leqembi. European public assessment report (EPAR) [Internet]. 2024 [cited 2025 Apr 17]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/leqembi
[29] Sims JR, Zimmer JA, Evans CD, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512-27. doi:10.1001/jama.2023.13239
[30] U.S. National Library of Medicine. ClinicalTrials.gov Identifier: NCT04437511 [Internet]. [cited 2025 Apr 17]. Available from: https://clinicaltrials.gov/study/NCT04437511
[31] European Medicines Agency. Kisunla. European public assessment report (EPAR) [Internet]. 2024 [cited 2025 Apr 17]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/kisunla
[32] U.S. Food and Drug Administration. FDA approves treatment for adults with Alzheimer’s disease [Internet]. 2024 [cited 2025 Apr 17]. Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-adults-alzheimers-disease
[33] Alzforum. Clinical Trials of Intravenous Bapineuzumab Halted [Internet]. 2012 [cited 2025 Apr 17]. Available from: https://www.alzforum.org/news/research-news/clinical-trials-intravenous-bapineuzumab-halted?id=3234
[34] Wu R, Chen F, Zhang Y, et al. Targeting aging and age-related diseases with vaccines. Nat Aging. 2024;4(4):464-82. doi:10.1038/s43587-024-00597-0
[35] Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry. 2018;83(4):369-76. doi:10.1016/j.biopsych.2017.06.004
[36] Lopez-Cuina M, Díaz-Hernández M, Vila M, et al. Nilotinib fails to prevent synucleinopathy and cell loss in a mouse model of multiple system atrophy. Mov Disord. 2020;35(7):1163-72. doi:10.1002/mds.28034
[37] Pluta R, Ułamek-Kozioł M. Tau Protein-Targeted Therapies in Alzheimer’s Disease: Current State and Future Perspectives. In: Huang X, editor. Alzheimer’s Disease: Drug Discovery. Exon Publications; 2020. doi:10.36255/exonpublications.alzheimersdisease.2020.ch4
[38] Dubois B, Feldman HH, Jacova C, et al. Masitinib for mild-to-moderate Alzheimer's disease: results from a randomized, placebo-controlled, phase 3 clinical trial. Alzheimers Res Ther. 2023;15(1):39. doi:10.1186/s13195-023-01169-x
[39] Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol. 2020;18(11):1106-25. doi:10.2174/1570159X18666200528142429
[40] Shabbir U, Arshad MS, Sameen A, et al. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients. 2021;13(2):690. doi:10.3390/nu13020690
[41] Cambeiro-Pérez N, Valdés L, López A, et al. A Metabolomics Approach Reveals Immunomodulatory Effects of Proteinaceous Molecules Derived From Gut Bacteria. Front Microbiol. 2018;9:2701. doi:10.3389/fmicb.2018.02701
[42] Sankar T, Chakravarty MM, Bescos A, et al. Deep Brain Stimulation Influences Brain Structure in Alzheimer's Disease. Brain Stimul. 2015;8(3):645-54. doi:10.1016/j.brs.2014.11.020
[43] Chang CH, Lane HY, Lin CH. Brain Stimulation in Alzheimer's Disease. Front Psychiatry. 2018;9:201. doi:10.3389/fpsyt.2018.00201
[44] Targum SD, Cutler NR, Ereshefsky L, et al. Effect of Age on Clinical Trial Outcome in Participants with Probable Alzheimer's Disease. J Alzheimers Dis. 2021;82(3):1243-57. doi:10.3233/JAD-210530
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aleksandra Boral, Bartłomiej Czarnecki, Wiktoria Pniok, Julia Koczur, Wiktor Werenkowicz, Dominika Kryś, Joanna Brzoza, Michał Górski, Wojciech Kurkiewicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 11
Number of citations: 0