The Microbiome and Epigenetic Regulation in Bone Metabolism: Implications for Osteoporosis
DOI:
https://doi.org/10.12775/JEHS.2025.82.60458Keywords
osteoporosis, bone metabolism, gut microbiome, microRNAs, epigenetics, bone remodelingAbstract
Introduction:
Osteoporosis is a common metabolic disorder associated with aging, characterized by a progressive loss of bone mass and microarchitectural deterioration, leading to an increased risk of fractures and diminished quality of life. Emerging evidence has identified the gut microbiota as a novel regulator of bone homeostasis, implicating intestinal microbial populations in the etiology of osteoporosis and bone metabolism. Understanding the pathways through which the gut microbiome influences skeletal integrity is crucial for advancing targeted strategies in the prevention and management of osteoporosis.
Aim of Study:
This study aims to summarize current knowledge regarding the role of the gut microbiome in the regulation of bone metabolism and its impact on the development and progression of osteoporosis. The review explores the mechanisms through which microbiota influence skeletal homeostasis, evaluates their contribution to osteoporosis susceptibility, and examines the consequences of microbiome changes on bone integrity.
Materials and Methods:
A literature search across PubMed using keywords: “osteoporosis,” “bone metabolism,” “gut microbiome,” “microRNAs,” “epigenetics,” and “bone remodeling.”
Conclusion:
Osteoporosis is increasingly understood as a condition influenced not only by hormonal and nutritional factors but also by the gut microbiota and epigenetic regulators such as microRNAs. These components modulate bone remodeling by affecting osteoblast and osteoclast activity through metabolic and immune pathways. The gut-bone axis and microbiota-miRNA interactions represent a dynamic regulatory network contributing to bone health. Dysbiosis and miRNA dysregulation may disrupt this balance, increasing susceptibility to osteoporosis. Recognizing these mechanisms broadens the understanding of osteoporosis and highlights new opportunities for biomarker discovery and microbiome- or miRNA-targeted therapies.
References
1. Nayak S, Edwards DL, Saleh AA, Greenspan SL. Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density. Osteoporosis International. 2015 May 3;26(5):1543–54.
https://doi.org/10.1007/s00198-015-3025-1
2. Sozen T, Ozisik L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017 Mar 1;4(1):46–56.
https://doi.org/10.5152/eurjrheum.2016.048
3. Kelsey JL. Risk factors for osteoporosis and associated fractures. Public Health Rep. 1989;104 Suppl(Suppl):14–20.
4. Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu N, et al. Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiologyopen. 2019 Aug 18;8(8).
https://doi.org/10.1002/mbo3.810
5. Trojniak J, Sendera A, Banaś-Ząbczyk A, Kopańska M. The MicroRNAs in the Pathophysiology of Osteoporosis. Int J Mol Sci. 2024 Jun 5;25(11):6240.
https://doi.org/10.3390/ijms25116240
6. Tang P, Xiong Q, Ge W, Zhang L. The role of MicroRNAs in Osteoclasts and Osteoporosis. RNA Biol. 2014 Nov 2;11(11):1355–63.
https://doi.org/10.1080/15476286.2014.996462
7. Coughlan T, Dockery F. Osteoporosis and fracture risk in older people. Clinical Medicine. 2014 Apr;14(2):187–91.
https://doi.org/10.7861/clinmedicine.14-2-187
8. Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, et al. Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci. 2023 Feb 14;24(4):3772.
https://doi.org/10.3390/ijms24043772
9. Sun Q, Liu S, Feng J, Kang Y, Zhou Y, Guo S. Current Status of MicroRNAs that Target the Wnt Signaling Pathway in Regulation of Osteogenesis and Bone Metabolism: A Review. Medical Science Monitor. 2021 Feb 8;27.
https://doi.org/10.12659/MSM.929510
10. Casado-Bedmar M, Viennois E. MicroRNA and Gut Microbiota: Tiny but Mighty—Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J Crohns Colitis. 2022 Jul 14;16(6):992–1005.
https://doi.org/10.1093/ecco-jcc/jjab223
11. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, et al. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity. 2018 Dec;49(6):1116-1131.e7.
https://doi.org/10.1016/j.immuni.2018.10.013
12. Gao Y, Patil S, Qian A. The Role of MicroRNAs in Bone Metabolism and Disease. Int J Mol Sci. 2020 Aug 24;21(17):6081.
https://doi.org/10.3390/ijms21176081
13. Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol. 2017 Nov;456:16–35.
https://doi.org/10.1016/j.mce.2016.11.018
14. Huang YQ, Jiang T, Su HT, Luo YW, Hou QK. [Gut microbiota and osteoporosis]. Nan Fang Yi Ke Da Xue Xue Bao. 2016 Feb 20;37(2):278–82.
https://doi.org/10.3969/j.issn.1673-4254.2017.02.23
15. Ohlsson C, Sjögren K. Osteomicrobiology: A New Cross-Disciplinary Research Field. Calcif Tissue Int. 2018 Apr 27;102(4):426–32.
https://doi.org/10.1007/s00223-017-0336-6
16. Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021 Jan 1;13(1).
https://doi.org/10.1080/19490976.2021.1894070
17. Cronin O, Lanham-New SA, Corfe BM, Gregson CL, Darling AL, Ahmadi KR, et al. Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis. Calcif Tissue Int. 2022 Mar 6;110(3):273–84.
https://doi.org/10.1007/s00223-021-00924-2
18. Pi C, Li YP, Zhou X, Gao B. The expression and function of microRNAs in bone homeostasis. Front Biosci (Landmark Ed) [Internet]. 2015 Jan 1 [cited 2025 Apr 14];20(1):119–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25553443
19. Subramaniam R, Vijakumaran U, Shanmuganantha L, Law JX, Alias E, Ng MH. The Role and Mechanism of MicroRNA 21 in Osteogenesis: An Update. Int J Mol Sci. 2023 Jul 11;24(14):11330.
https://doi.org/10.3390/ijms241411330
20. Zheng H, Liu J, Tycksen E, Nunley R, McAlinden A. MicroRNA-181a/b-1 over-expression enhances osteogenesis by modulating PTEN/PI3K/AKT signaling and mitochondrial metabolism. Bone. 2019 Jun;123:92–102.
https://doi.org/10.1016/j.bone.2019.03.020
21. Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, et al. microRNA-103a Functions as a Mechanosensitive microRNA to Inhibit Bone Formation Through Targeting Runx2. Journal of Bone and Mineral Research. 2015 Feb 1;30(2):330–45.
https://doi.org/10.1002/jbmr.2352
22. Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, León Carmona GG de, Aguirre Padilla ME, Chakraborty S, et al. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. Molecules [Internet]. 2021 Dec 30 [cited 2025 Apr 14];27(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35011442/
https://doi.org/10.3390/molecules27010211
23. Ji X, Chen X, Yu X. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int J Mol Sci. 2016 Mar 9;17(3):349.
https://doi.org/10.3390/ijms17030349
24. Marini F, Cianferotti L, Brandi M. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int J Mol Sci. 2016 Aug 12;17(8):1329.
https://doi.org/10.3390/ijms17081329
25. Mäkitie RE, Hackl M, Weigl M, Frischer A, Kämpe A, Costantini A, et al. Unique, Gender-Dependent Serum microRNA Profile in PLS3 Gene-Related Osteoporosis. Journal of Bone and Mineral Research. 2020 Dec 1;35(10):1962–73.
https://doi.org/10.1002/jbmr.4097
26. Jing-An S. Overexpression of miR-29b Partially Rescued the Osteogenic Differentiation and Osteogenesis Ability of Ovx-BMSCs. Am J Biomed Sci Res. 2021 Apr 8;12(4):294–300.
https://doi.org/10.34297/AJBSR.2021.12.001761
27. Wang G, Wang F, Zhang L, Yan C, Zhang Y. miR-133a silencing rescues glucocorticoid-induced bone loss by regulating the MAPK/ERK signaling pathway. Stem Cell Res Ther. 2021 Mar 29;12(1):215.
https://doi.org/10.1186/s13287-021-02278-w
28. De Martinis M, Ginaldi L, Allegra A, Maddalena Sirufo M, Pioggia G, Tonacci A, et al. Molecular Sciences The Osteoporosis/Microbiota Linkage: The Role of miRNA. [cited 2025 Apr 13];
https://doi.org/10.3390/ijms21238887
29. Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE, Seely KD;, et al. Molecular Sciences The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. 2021 [cited 2025 Apr 13];
https://doi.org/10.3390/ijms22179452
30. De-Ugarte L, Yoskovitz G, Balcells S, Güerri-Fernández R, Martinez-Diaz S, Mellibovsky L, et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genomics. 2016 Jan 10;8(1):75.
https://doi.org/10.1186/s12920-015-0149-2
31. Ko NY, Chen LR, Chen KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci. 2020 Jul 10;21(14):4886.
https://doi.org/10.3390/ijms21144886
32. Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Molecular Medicine. 2021 Dec 28;27(1):122.
https://doi.org/10.1186/s10020-021-00386-0
33. Shen W, Sun B, Zhou C, Ming W, Zhang S, Wu X. CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose‐derived mesenchymal stem cells and bone regeneration in osteoporosis via miR‐33a‐5p. J Cell Mol Med. 2020 Nov 30;24(21):12513–24.
https://doi.org/10.1111/jcmm.15792
34. Li Z, Xue H, Tan G, Xu Z. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep. 2021 Sep 9;24(5):788.
https://doi.org/10.3892/mmr.2021.12428
35. Shuai Y, Liao L, Su X, Sha N, Li X, Wu Y, et al. Circulating microRNAs in serum as novel biomarkers for osteoporosis: a case-control study. Ther Adv Musculoskelet Dis. 2020;12:1759720X20953331.
https://doi.org/10.1177/1759720X20953331
36. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri Treatment Prevents Bone Loss in a Menopausal Ovariectomized Mouse Model. J Cell Physiol. 2014 Nov;229(11):1822–30.
https://doi.org/10.1002/jcp.24636
37. Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, et al. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res. 2017 Oct 4;5(1):17046.
https://doi.org/10.1038/boneres.2017.46
38. Li P, Ji B, Luo H, Sundh D, Lorentzon M, Nielsen J. One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density. NPJ Biofilms Microbiomes. 2022 Oct 19;8(1):84.
https://doi.org/10.1038/s41522-022-00348-2
39. Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res. 2023 Jun 9;11(1):31.
https://doi.org/10.1038/s41413-023-00264-x
40. Wang F, Wei W, Liu PJ. Effects of probiotic supplementation on bone health in postmenopausal women: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2024 Nov 1;15.
https://doi.org/10.3389/fendo.2024.1487998
41. Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ. 2021;9:e12293.
https://doi.org/10.7717/peerj.12293
42. Chen T, Wang N, Hao Y, Fu L. Fecal microbiota transplantation from postmenopausal osteoporosis human donors accelerated bone mass loss in mice. Front Cell Infect Microbiol. 2024 Dec 5;14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kornel Celoch, Andrzej Porczyński, Jakub Cegielski, Kamil Kruk, Jakub Bulanda, Elżbieta Bukowczan, Jakub Ślęzak, Daniel Wojciech, Martyna Jabrzyk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 71
Number of citations: 0