Humanities
Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Journal of Education, Health and Sport

Polyphenols and radiotherapy: literature review of preclinical and clinical evidence
  • Home
  • /
  • Polyphenols and radiotherapy: literature review of preclinical and clinical evidence
  1. Home /
  2. Archives /
  3. Vol. 82 (2025) /
  4. Medical Sciences

Polyphenols and radiotherapy: literature review of preclinical and clinical evidence

Authors

  • Maksymilian Wiśniowski Medical University of Lublin https://orcid.org/0009-0004-2470-3074
  • Klaudia Kulig Medical University of Lublin https://orcid.org/0009-0003-1569-4180
  • Ada Wiśniowska Warsaw Medical University https://orcid.org/0009-0000-8703-8527
  • Kacper Buczek Medical University of Lublin https://orcid.org/0009-0005-0521-3536
  • Patrycja Zwierzchlewska https://orcid.org/0009-0005-8073-1042
  • Katarzyna Kulszo Medical University of Lublin https://orcid.org/0000-0002-8573-9714
  • Bartłomiej Baszun Medical University of Lublin https://orcid.org/0009-0003-1694-4268
  • Piotr Bijak Medical University of Lublin https://orcid.org/0009-0008-7107-6914
  • Aleksandra Kozłowska Medical University of Lublin https://orcid.org/0009-0006-6900-2196
  • Julia Dąbrowska Medical University of Lublin https://orcid.org/0009-0009-0903-3603

DOI:

https://doi.org/10.12775/JEHS.2025.82.60362

Keywords

Radiotherapy, radiation, Polyphenols, Curcumin, Genistein, Chrysin, Ellagic Acid, resveratrol, quercetin, Apigenin, Epicatechin, kaempferol, Caffeic Acid, Gallic acid

Abstract

Introduction and aim: Radiotherapy is a fundamental component of cancer treatment but is limited by tumor radioresistance and damage to healthy tissues. Polyphenols—plant-derived compounds with antioxidant, anti-inflammatory, and anticancer properties—have gained attention for their potential to modulate radiotherapy outcomes. This review aims to evaluate preclinical and clinical evidence on the effects of selected polyphenols in combination with radiotherapy.
Materials and methods: A comprehensive literature search was conducted using PubMed, ScienceDirect, ResearchGate, and Google Scholar, focusing on studies from the last two decades. Search terms included: radiotherapy, radiation. polyphenols, curcumin, genistein, chrysin, ellagic acid, resveratrol, quercetin, apigenin, epicatechin, kaempferol, caffeic acid, gallic acid. Both in vitro and in vivo studies were included, as well as available clinical trials.
Results: Several polyphenols—including curcumin, genistein, ellagic acid, resveratrol, and quercetin—demonstrated the ability to enhance radiosensitivity in tumor cells or protect normal tissues. Curcumin and genistein have shown early clinical benefits, particularly in head and neck and prostate cancer patients. However, most polyphenols remain in the preclinical stage.
Conclusion: Polyphenols show promise as adjuncts to radiotherapy, with context-dependent radiosensitizing or radioprotective effects. Further clinical trials are necessary to validate efficacy, safety, and optimal dosing before integration into standard oncology protocols.

Author Biographies

Maksymilian Wiśniowski, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Klaudia Kulig, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Kacper Buczek, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Katarzyna Kulszo, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Bartłomiej Baszun, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Piotr Bijak, Medical University of Lublin

Student Scientific Circle at the Department of Radiotherapy, Medical
University of Lublin

Aleksandra Kozłowska, Medical University of Lublin

Department of Radiotherapy, Medical
University of Lublin

References

Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi:10.3322/caac.21871

Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of Tumor Eradication. Front Cell Dev Biol. 2020;8:261. Published 2020 Apr 24. doi:10.3389/fcell.2020.00261

Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci). 2018;6(3–4):79–100. doi:10.1142/S2339547818300020

Giulietti A. Laser-Driven Particle Acceleration for Radiobiology and Radiotherapy: Where We Are and Where We Are Going. Med Appl LaserGenerated Beams Part IV Rev Prog Strateg Futur (2017) 10239:1023904. doi: 10.1117/12.2270945

Guo Z, Lei L, Zhang Z, Du M, Chen Z. The potential of vascular normalization for sensitization to radiotherapy. Heliyon. 2024;10(12):e32598. Published 2024 Jun 8. doi:10.1016/j.heliyon.2024.e32598

Kumari N, Raghavan SC. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj. 2021;1865(5):129857. doi:10.1016/j.bbagen.2021.129857

Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy [published correction appears in Int J Nanomedicine. 2021 Dec 16;16:8139-8140. doi: 10.2147/IJN.S352169.]. Int J Nanomedicine. 2021;16:1083-1102. Published 2021 Feb 12. doi:10.2147/IJN.S290438

Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24-48. doi:10.1016/j.tips.2017.11.003

Conti V, Polcaro G, De Bellis E, et al. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med. 2024;14(7):685. Published 2024 Jun 26. doi:10.3390/jpm14070685

Kabakov, A.E.; Yakimova, A.O. Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers 2021, 13, 1102.

Liu, Y.; Zheng, C.; Huang, Y.; He, M.; Xu, W.W.; Li, B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340.

Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020, 9, 1651.

Furhad S, Bokhari AA. Herbal Supplements. [Updated 2024 Sep 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536964/

Asiimwe JB, Nagendrappa PB, Atukunda EC, et al. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med. 2021;2021:9963038. Published 2021 May 17. doi:10.1155/2021/9963038

Kanimozhi T, Hindu K, Maheshvari Y, et al. Herbal supplement usage among cancer patients: A questionnaire-based survey. J Cancer Res Ther. 2021;17(1):136-141. doi:10.4103/jcrt.JCRT_612_18

George S, Abrahamse H. Redox potential of antioxidants in Cancer progression and prevention. Antioxidants. (2020) 9:1156. doi: 10.3390/antiox9111156

Cogo, E.; Elsayed, M.; Bhardwaj, S.; Cooley, K.; Aycho, C.; Liang, V.; Papadogianis, P.; Psihogios, A.; Seely, D. Mistletoe Extracts during the Oncological Perioperative Period: A Systematic Review and Meta-Analysis of Human Randomized Controlled Trials. Curr. Oncol. 2023, 30, 8196–8219.

Lam, C.S.; Koon, H.K.; Loong, H.H.; Chung, V.C.; Cheung, Y.T. Associations of dietary supplement use with all-cause and cause-specific mortality in patients diagnosed with cancer: A large prospective cohort study in the UK Biobank. Eur. J. Nutr. 2023, 62, 879–889.

Woldeselassie M, Tamene A. Therapeutic controversies over use of antioxidant supplements during cancer treatment: a scoping review. Front Nutr. 2024;11:1480780. Published 2024 Dec 9. doi:10.3389/fnut.2024.1480780

Yasueda A, Urushima H, Ito T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review. Integr Cancer Ther. 2016;15(1):17-39. doi:10.1177/1534735415610427

Nisar S, Masoodi T, Prabhu KS, et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother. 2022;154:113610. doi:10.1016/j.biopha.2022.113610

Ramezani V, Ghadirian S, Shabani M, Boroumand MA, Daneshvar R, Saghafi F. Efficacy of curcumin for amelioration of radiotherapy-induced oral mucositis: a preliminary randomized controlled clinical trial. BMC Cancer. 2023;23(1). doi:10.1186/S12885-023-10730-8

Jafari A, Abbastabar M, Alaghi A, Heshmati J, Crowe FL, Sepidarkish M. Curcumin on Human Health: A Comprehensive Systematic Review and Meta-Analysis of 103 Randomized Controlled Trials. Phytother Res. 2024;38(12):6048-6061. doi:10.1002/ptr.8340

Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. Journal of Personalized Medicine. 2024; 14(7):685. https://doi.org/10.3390/jpm14070685

Cai Y, Sheng Z, Liang S. Radiosensitization effects of curcumin plus cisplatin on non-small cell lung cancer A549 cells. Oncol Lett. 2019;18(5):529-534. doi:10.3892/ol.2019.10364

Deng X, Chen C, Wu F, et al. Curcumin inhibits the migration and invasion of non-small-cell lung cancer cells through radiation-induced suppression of epithelial-mesenchymal transition. Technol Cancer Res Treat. 2020;19:1533033820947485. doi:10.1177/1533033820947485

Cuixia W, Yun Z, Chong Z, et al. Enhanced radiosensitization effect of curcumin delivered by PVP-PCL nanoparticle in lung cancer. J Nanomater. 2017;8:9625909. doi:10.1155/2017/9625909

Fan H, Shao M, Huang S, et al. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol Lett. 2016;11(6):3729-3734. doi:10.3892/ol.2016.4438

Zhu D, Shao M, Yang J, et al. Curcumin enhances radiosensitization of nasopharyngeal carcinoma via mediating regulation of tumor stem-like cells by a circRNA network. J Cancer. 2020;11(9):2360-2370. doi:10.7150/jca.39511

Minafra L, Porcino N, Bravatà V, et al. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci Rep. 2019;9(1):11134. doi:10.1038/s41598-019-47553-2

Yang K, Liao Z, Wu Y, et al. Curcumin and Glu-GNPs induce radiosensitivity against breast cancer stem-like cells. Biomed Res Int. 2020;2020:3189217. doi:10.1155/2020/3189217

Assad DX, Borges GA, Avelino SR, et al. Additive cytotoxic effects of radiation and mTOR inhibitors in a cervical cancer cell line. Pathol Res Pract. 2018;214(2):259-262. doi:10.1016/j.prp.2017.10.019

Hidayat YM, Wagey F, Suardi D, et al. Analysis of curcumin as a radiosensitizer in cancer therapy with serum survivin examination: randomized control trial. Asian Pac J Cancer Prev. 2021;22(1):139-143. doi:10.31557/APJCP.2021.22.1.139

Liu J, Li M, Wang Y, Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target. 2017;25(7):645-652. doi:10.1080/1061186X.2017.1320618

Rutz J, Benchellal A, Kassabra W, et al. Growth, proliferation and metastasis of prostate cancer cells is blocked by low-dose curcumin in combination with light irradiation. Int J Mol Sci. 2021;22(18):9966. doi:10.3390/ijms22189966

Meng X, Cai J, Liu J, et al. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle. 2017;16(12):1181-1192. doi:10.1080/15384101.2017.1323596

Zoi V, Galani V, Vartholomatos E, et al. Curcumin and radiotherapy exert synergistic anti-glioma effect in vitro. Biomedicines. 2021;9(11):1562. doi:10.3390/biomedicines9111562

Wang WH, Shen CY, Chien YC, et al. Validation of enhancing effects of curcumin on radiotherapy with F98/FGT glioblastoma-bearing rat model. Int J Mol Sci. 2020;21(12):4385. doi:10.3390/ijms21124385

Liu G, Wang Y, Li M. Curcumin sensitized the antitumor effects of irradiation in promoting apoptosis of esophageal squamous-cell carcinoma through NF-κB signaling pathway. J Pharm Pharmacol. 2018;70(10):1340-1348. doi:10.1111/jphp.12958

Yang G, Qiu J, Wang D, et al. Traditional Chinese medicine curcumin sensitizes human colon cancer to radiation by altering the expression of DNA repair-related genes. Anticancer Res. 2018;38(1):131-136. doi:10.21873/anticanres.12198

Schwarz K, Dobiasch S, Nguyen L, et al. Modification of radiosensitivity by curcumin in human pancreatic cancer cell lines. Sci Rep. 2020;10(1):3815. doi:10.1038/s41598-020-60606-8

Li G, Wang Z, Chong T, et al. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother. 2017;94:974-981. doi:10.1016/j.biopha.2017.08.089

Xu R, Li H, Wu S, et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int Urol Nephrol. 2019;51(10):1771-1779. doi:10.1007/s11255-019-02220-4

Shah S, Rath H, Sharma G, Senapati S, Mishra E. Effectiveness of curcumin mouthwash on radiation-induced oral mucositis among head and neck cancer patients: A triple-blind, pilot randomised controlled trial. Indian J Dent Res. 2020;31(5):718-727. doi:10.4103/IJDR.IJDR_822_18

Arun P. et al. (2020). Role of turmeric extract in minimising mucositis in patients receiving radiotherapy for head and neck squamous cell cancer: a randomised, placebo-controlled trial. J Laryngol Otol, 1–6. DOI: 10.1017/S0022215120000316

Delavarian Z. et al. (2019). Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Special Care in Dentistry, 1–7. DOI: 10.1111/scd.12358]

Adhvaryu M. et al. (2018). Curcumin prevents mucositis and improves patient compliance in head & neck cancer patients undergoing radio-chemotherapy. Ann Med Chem Res, 4(1): 1022.

Talakesh, T.; Tabatabaee, N.; Atoof, F.; Aliasgharzadeh, A.; Sarvizade, M.; Farhood, B.; Najafi, M. Effect of Nano-Curcumin on Radiotherapy-Induced Skin Reaction in Breast Cancer Patients: A Randomized, Triple-Blind, Placebo-Controlled Trial. Curr. Radiopharm. 2022, 15, 332–340.

Kia SJ, Basirat M, Saedi HS, Arab SA. Effects of nanomicelle curcumin capsules on prevention and treatment of oral mucosits in patients under chemotherapy with or without head and neck radiotherapy: a randomized clinical trial. BMC Complement Med Ther. 2021;21(1). doi:10.1186/S12906-021-03400-4

Ryan Wolf, J.; Heckler, C.E.; Guido, J.J.; Peoples, A.R.; Gewandter, J.S.; Ling, M.; Vinciguerra, V.P.; Anderson, T.; Evans, L.; Wade, J.; Pentland, A.P.; Morrow, G.R. Oral curcumin for radiation dermatitis: A URCC NCORP study of 686 breast cancer patients. Support. Care Cancer, 2018, 26(5), 1543-1552

Hejazi, J.; Rastmanesh, R.; Taleban, F.A.; Molana, S.H.; Hejazi, E.; Ehtejab, G.; Hara, N. Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study. Nutr. Cancer 2016, 68, 77–85.

Elad S, Cheng K, Lalla R. Erratum to “MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2021;126:4423–31

Liu S, Liu J, He L, et al. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules. 2022;27(14):4400. Published 2022 Jul 8. doi:10.3390/molecules27144400

Imam Z., Khasawneh M., Jomaa D., Iftikhar H., Sayedahmad Z. Drug Induced Liver Injury Attributed to a Curcumin Supplement. Case Rep. Gastrointest. Med. 2019;2019:6029403. doi: 10.1155/2019/6029403.

Hussaarts K.G., Hurkmans D.P., Hoop E.O.-D., van Harten L.J., Berghuis S., van Alphen R.J., Spierings L.E., van Rossum-Schornagel Q.C., Vastbinder M.B., van Schaik R.H., et al. Impact of Curcumin (with or without Piperine) on the Pharmacokinetics of Tamoxifen. Cancers. 2019;11:403. doi: 10.3390/cancers11030403.

Xue, P., Zhang, G., Zhang, J., & Ren, L. (2022). Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment. Phytomedicine. DOI: 10.1016/j.phymed.2022.153998

Golmohammadi, M., Zamanian, M. Y., Jalal, S. M., Noraldeen, S. A. M., Ramírez-Coronel, A. A., Oudaha, K. H., Obaid, R. F., Almulla, A. F., Bazmandegan, G., & Kamiab, Z. (2023). A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Science & Nutrition, 11, 7458–7468. DOI: 10.1002/fsn3.3699

Das, U., Biswas, S., Chattopadhyay, S., Chakraborty, A., Sharma, R. D., Banerji, A., & Dey, S. (2017). Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study. Scientific Reports. DOI: 10.1038/s41598-017-14211-4

Zulueta A, Caretti A, Signorelli P, Ghidoni R. Resveratrol: A potential challenger against gastric cancer. World J Gastroenterol. 2015;21(37):10636-43. doi:10.3748/wjg.v21.i37.10636.

Ren B, Kwah MX-Y, Liu C, Ma Z, Shanmugam MK, Ding L, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021;507:50-65. doi:10.1016/j.canlet.2021.05.001.

Komorowska D, Radzik T, Kalenik S, Rodacka A. Natural radiosensitizers in radiotherapy: Cancer treatment by combining ionizing radiation with resveratrol. Int J Mol Sci. 2022;23(18):10627. doi:10.3390/ijms231810627.

Kma L. Synergistic effect of resveratrol and radiotherapy in control of cancers. Asian Pac J Cancer Prev. 2013;14(11):6197-6208. doi:10.7314/apjcp.2013.14.11.6197.

Almatroodi SA, Alsahli MA, Aljohani ASM, Alhumaydhi FA, Babiker AY, Khan AA, et al. Potential therapeutic targets of resveratrol, a plant polyphenol, and its role in the therapy of various types of cancer. Molecules. 2022;27(9):2665. doi:10.3390/molecules27092665.

Sokal A, Mruczek P, Niedoba M, Dewalska A, Stocerz K, Kadela-Tomanek M. Anticancer Activity of Ether Derivatives of Chrysin. Molecules. 2025;30(4):960. doi:10.3390/molecules30040960

Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, et al. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Int J Mol Sci. 2010 May 19;11(5):2188–2199. doi:10.3390/ijms11052188

Khoo BY, Chua SL, Balaram P. Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int J Mol Sci. 2010 May 19;11(5):2188–2199. doi:10.3390/ijms11052188

Jafari S, Ardakan AK, Aghdam EM, Mesbahi A, Montazersaheb S, Molavi O. Induction of immunogenic cell death and enhancement of the radiation-induced immunogenicity by chrysin in melanoma cancer cells. Sci Rep. 2024;14:23231. doi:10.1038/s41598-024-72697-1

Ragab EM, El Gamal DM, Mohamed TM, Khamis A. Therapeutic potential of chrysin nanoparticle-mediation inhibition of succinate dehydrogenase and ubiquinone oxidoreductase in pancreatic and lung adenocarcinoma. Eur J Med Res. 2022;27(1). doi:10.1186/s40001-022-00803-y

Taysi S, Algburi FS, Taysi ME, Caglayan C. Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, COVID-19, and radiotherapy. Phytother Res. 2023;37(4):1705-1720. doi:10.1002/ptr.7707.

Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant properties of caffeic acid in cancer treatment. Int J Mol Sci. 2024;25(14):7631. doi:10.3390/ijms25147631.

Prades-Sagarra E, Laarakker F, Dissy J, Lieuwes NG, Biemans R, Dubail M, Fouillade C, Yaromina A, Dubois LJ. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiother Oncol. 2023;186:110021. doi:10.1016/j.radonc.2023.110021.

Wianowska D, Olszowy-Tomczyk M. A concise profile of gallic acid—from its natural sources through biological properties and chemical methods of determination. Molecules. 2023;28(3):1186. doi:10.3390/molecules28031186.

Nair GG, Nair CKK. Radioprotective effects of gallic acid in mice. Biomed Res Int. 2013;2013:953079. doi:10.1155/2013/953079.

Pérez-Durán J, Luna A, Portilla A, Martínez P, Ceballos G, Ortíz-Flores MÁ, Solis-Paredes JM, Nájera N. (-)-Epicatechin inhibits metastatic-associated proliferation, migration, and invasion of murine breast cancer cells in vitro. Molecules. 2023;28(17):6229. doi:10.3390/molecules28176229. PMID: 37687058; PMCID: PMC10488497.

Takanashi K, Suda M, Matsumoto K, Ishihara C, Toda K, Kawaguchi K, Senga S, Kobayashi N, Ichikawa M, Katoh M, Hattori Y, Kawahara S, Umezawa K, Fujii H, Makabe H. Epicatechin oligomers longer than trimers have anti-cancer activities, but not the catechin counterparts. Sci Rep. 2017;7:7791. doi:10.1038/s41598-017-08059-x. PMID: 28798415; PMCID: PMC5552761.

Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. Phytomedicine. 2017;52:295-310. doi:10.1016/j.phymed.2017.11.005. PMID: 30166104.

Elbaz HA, Lee I, Antwih DA, Liu J, Hüttemann M, Zielske SP. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One. 2014;9(2):e88322. doi:10.1371/journal.pone.0088322. PMID: 24516636; PMCID: PMC3916420.

Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, Shahbaz M, Fokou PVT, Arshad MU, Khan H, Guerreiro SG, Martins N, Estevinho LM. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules. 2019;24(12):2277. doi:10.3390/molecules24122277.

Sengupta B, Biswas P, Roy D, Lovett J, Simington L, Fry DR, Travis K. Anticancer Properties of Kaempferol on Cellular Signaling Pathways. Curr Top Med Chem. 2022;22(30):2474–2482. doi:10.2174/1568026622666220907112822.

Kuo WT, Tsai YC, Wu HC, Ho YJ, Chen YS, Yao CH, Yao CH. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep. 2015;34(5):2351-2356. doi:10.3892/or.2015.4204.

Ruan GY, Ye LX, Lin JS, Lin HY, Yu LR, Wang CY, Mao XD, Zhang SH, Sun PM. An integrated approach of network pharmacology, molecular docking, and experimental verification uncovers kaempferol as the effective modulator of HSD17B1 for treatment of endometrial cancer. J Transl Med. 2023;21(1):204. doi:10.1186/s12967-023-04048-z.

Deng S, Li J, Li L, Lin S, Yang YY, Liu T, Zhang T, Xie G, Wu D, Xu Y. Quercetin alleviates lipopolysaccharide‑induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int J Mol Med. 2023;52(6):5321. doi:10.3892/ijmm.2023.5321.

Guo H, Ding H, Tang X, Liang M, Li S, Zhang J, Cao J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Cancer Med. 2021;10(6):13925. doi:10.1111/1759-7714.13925.

Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci. 2019;20(13):3177. doi:10.3390/ijms20133177.

Shafabakhsh R, Asemi Z. Quercetin: A natural compound for ovarian cancer treatment. J Ovarian Res. 2019;12(1):53. doi:10.1186/s13048-019-0530-4.

Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers. 2023;15(14):3585. doi:10.3390/cancers15143585.

Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors. 2023;49(5):2113. doi:10.1002/biof.2113.

Pratas A, Malhão B, Palma R, Mendonça P, Cervantes R, Marques-Ramos A. Effects of apigenin on gastric cancer cells. Biomed Pharmacother. 2024;169:116251. doi:10.1016/j.biopha.2024.116251.

Rahmani AH, Alsahli MA, Almatroudi A, Almogbel MA, Khan AA, Anwar S, Almatroodi SA. The Potential Role of Apigenin in Cancer Prevention and Treatment. Molecules. 2022;27(18):6051. doi:10.3390/molecules27186051.

Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. Pharm Biol. 2025;63(1):141-155. doi:10.1080/13880209.2025.2469607.

Liu X, Zheng T, Bao Y, Li P, Zhao T, Liu Y, Wang H, Sun C. Genistein Implications in Radiotherapy: Kill Two Birds with One Stone. Molecules. 2024;30(1):188. doi:10.3390/molecules30010188.

T Kaytor MD, Serebrenik AA, Lapanowski K, McFall D, Jones M, Movsas B, Simone CB 2nd, Brown SL. The radioprotectant nano-genistein enhances radiotherapy efficacy of lung tumors in mice. Transl Lung Cancer Res. 2023;12(6):856. doi:10.21037/tlcr-22-856.

Ahmad IU, Forman JD, Sarkar FH, Hillman GG, Heath E, Vaishampayan U, et al. Soy Isoflavones in Conjunction With Radiation Therapy in Patients With Prostate Cancer. Nutr Cancer. 2010;62(8):996-1000. doi:10.1080/01635581.2010.509839.

Journal of Education, Health and Sport

Downloads

  • PDF

Published

2025-06-16

How to Cite

1.
WIŚNIOWSKI, Maksymilian, KULIG, Klaudia, WIŚNIOWSKA, Ada, BUCZEK, Kacper, ZWIERZCHLEWSKA, Patrycja, KULSZO, Katarzyna, BASZUN, Bartłomiej, BIJAK, Piotr, KOZŁOWSKA, Aleksandra and DĄBROWSKA, Julia. Polyphenols and radiotherapy: literature review of preclinical and clinical evidence. Journal of Education, Health and Sport. Online. 16 June 2025. Vol. 82, p. 60362. [Accessed 27 December 2025]. DOI 10.12775/JEHS.2025.82.60362.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 82 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Maksymilian Wiśniowski, Klaudia Kulig, Ada Wiśniowska, Kacper Buczek, Patrycja Zwierzchlewska, Katarzyna Kulszo, Bartłomiej Baszun, Piotr Bijak, Aleksandra Kozłowska, Julia Dąbrowska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

Stats

Number of views and downloads: 317
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Radiotherapy, radiation, Polyphenols, Curcumin, Genistein, Chrysin, Ellagic Acid, resveratrol, quercetin, Apigenin, Epicatechin, kaempferol, Caffeic Acid, Gallic acid
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop