Polylactic Acid in Dentistry – A Sustainable Biomaterial for Oral Health and Clinical Practice
DOI:
https://doi.org/10.12775/JEHS.2025.82.60275Keywords
polylactic acid, biopolymers, periodontology, prosthodontics, orthodonticsAbstract
Introduction and Objective: Polylactic acid (PLA) is a biodegradable, biocompatible polymer derived from renewable sources. In light of the growing importance of environmental sustainability, health promotion, and digital innovation, PLA has gained relevance in medical and dental sciences. The objective of this review is to explore PLA's applications in dentistry while highlighting its potential role in patient safety, and the development of sustainable health solutions.
Brief Description of the State of Knowledge: PLA is increasingly utilized in dental procedures due to its safety profile and compatibility with digital manufacturing technologies, including 3D printing. In surgery and periodontology, PLA-based membranes are used in guided bone and tissue regeneration (GBR/GTR). In prosthodontics, PLA supports the production of temporary crowns, bridges, and denture bases. In orthodontics, it is applied in palatal plates and aligners. Its biodegradable nature and absence of toxic residues make PLA a valuable alternative in preventive and environmentally conscious dental care.
Summary: Although PLA shows strong potential, its mechanical limitations require further improvement. Research into composites and material modifications is ongoing. PLA represents a promising direction in dentistry, offering opportunities for innovation in clinical practice, sustainability, and the education of future healthcare professionals.
References
1. Li G, Zhao M, Xu F, Yang B, Li X, Meng X, et al. Synthesis and Biological Application of Polylactic Acid. Molecules. 2020;25(21):5023.
2. Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19(12):634–43.
3. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D. D-(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 2010;(12):1106–9.
4. Bussa M, Eisen A, Zollfrank C, Röder H. Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactid acid. J Clean Prod. 2019;213:1299–312.
5. Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612–26.
6. Tan L, Yu X, Wan P, Yang K. Biodegradable Materials for Bone Repairs: A Review. J Mater Sci Technol. 2013;29(6):503–13.
7. John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol. 2007;74(3):524–34.
8. Fan Y, Zhou C, Zhu X. Selective Catalysis of Lactic Acid to Produce Commodity Chemicals. Catal Rev. 2009;51(3):293–324.
9. Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO. Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett. 2006;28(9):663–70.
10. Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies — a review. J of Chemical Tech & Biotech. 2006;81(7):1119–29.
11. Auras R, Harte B, Selke S. An Overview of Polylactides as Packaging Materials. Macromol Biosci. 2004;4(9):835–64.
12. Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72(2):244–51.
13. Singhvi M, Gokhale D. Biomass to biodegradable polymer (PLA). RSC Adv. 2013;3(33):13558.
14. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.
15. Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190–191:97–110.
16. Siafaka PI, Barmbalexis P, Bikiaris DN. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci. 2016;88:12–25.
17. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.
18. Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev. 2018;54(3):127–38.
19. Ormiston JA, Serruys PWS. Bioabsorbable coronary stents. Circ Cardiovasc Interv. 2009;2(3):255–60.
20. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611–22.
21. Deng Y, Liang Y, Liu X. Biomaterials for Periodontal Regeneration. Dent Clin North Am. 2022;66(4):659–72.
22. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94(1):10–21.
23. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–37.
24. Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017;111:1–26.
25. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TMG, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater. 2012;28(7):703–21.
26. Sam G, Pillai BRM. Evolution of Barrier Membranes in Periodontal Regeneration-"Are the third Generation Membranes really here?". J Clin Diagn Res. 2014;8(12):14–7.
27. Takayama A, Moroi A, Saito Y, Yoshizawa K, Nishida T, Ueki K. Evaluation of Space-Maintaining Sinus Membrane Using the Absorbable Screws in Sinus Lifting Bone Augmentation. Implant Dent. 2019;28(1):28–38.
28. Jang HJ, Kang MS, Kim WH, Jo HJ, Lee SH, Hahm EJ, et al. 3D printed membranes of polylactic acid and graphene oxide for guided bone regeneration. Nanoscale Adv. 2023;5(14):3619–28.
29. Zhang HY, Jiang HB, Ryu JH, Kang H, Kim KM, Kwon JS. Comparing Properties of Variable Pore-Sized 3D-Printed PLA Membrane with Conventional PLA Membrane for Guided Bone/Tissue Regeneration. Materials (Basel). 2019;12(10):1718.
30. Crenn MJ, Rohman G, Fromentin O, Benoit A. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization. Dent Mater J. 2022;41(1):110–6.
31. Deng K, Chen H, Zhao Y, Zhou Y, Wang Y, Sun Y. Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology: A pilot study. PLoS One. 2018;13(8):e0201777.
32. Benli M, Eker-Gümüş B, Kahraman Y, Huck O, Özcan M. Can polylactic acid be a CAD/CAM material for provisional crown restorations in terms of fit and fracture strength? Dent Mater J. 2021;40(3):772–80.
33. Molinero-Mourelle P, Canals S, Gómez-Polo M, Solá-Ruiz MF, Del Río Highsmith J, Viñuela AC. Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations. Int J Prosthodont. 2018;31(4):349–50.
34. Huang ACS, Ishida Y, Hatano-Sato K, Oishi S, Hosomichi J, Usumi-Fujita R, et al. NF-κB Decoy Oligodeoxynucleotide-Loaded Poly Lactic-co-glycolic Acid Nanospheres Facilitate Socket Healing in Orthodontic Tooth Movement. Int J Mol Sci. 2024;25(10):5223.
35. Naveed N, Dutta K, Balamurugan D, Haveri AV, Sabapathy K. Oil-Incorporated Poly(Lactic Acid) as an Alternative Material for Orthodontic Base Plate: A 3D Printing Approach. Tijing LD, editor. Adv Polym Technol. 2022;2022:1–16.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wiktoria Musyt, Szymon Dudziński, Wiktoria Pietruszka, Maria Potrykus

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The periodical offers access to content in the Open Access system under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Stats
Number of views and downloads: 210
Number of citations: 0